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THE ATTRACTIVENESS OF THE FIXED POINTS 
OF A ./GI/1 QUEUE 
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We consider an infinite tandem of first-come-first-served queues. The 

service times have unit mean, and are independent and identically distributed 
across queues and customers. Let I be a stationary and ergodic interarrival 
sequence with marginals of mean r > 1, and suppose it is independent of 
all service times. The process I is said to be a fixed point for the first, 
and hence for each, queue if the corresponding interdeparture sequence is 
distributed as I. Assuming that such a fixed point exists, we show that it is the 
distributional limit of passing an arbitrary stationary and ergodic interarrival 
process of mean r through the infinite queueing tandem. 

1. Introduction. Consider an infinite series of ./GI/1 queues indexed by Z+. 
Such a series is usually defined by an i.i.d.\sequence of non-negative random 
variables {S(n, k)}ne, k,+, where S(n, k) is the service time of the nth customer 
at the kth node. It is assumed that E(S(1, 1)) = 1, and that the service distribution 
is a fixed, but otherwise arbitrary, probability measure a on R+. To avoid 
trivialities we will suppose that a is not a point mass concentrated at 1 (otherwise, 
it is easy to see that every departure process from the queue is a fixed point for the 
queue). At each queue, the buffers are assumed to have infinite capacity and the 
service discipline is assumed to be first-come-first-served. 

We study the effect of passing customers through this infinite queueing tandem. 
The arrivals process to this tandem, A1 = {A(n, l),nz, is assumed to be stationary 
and ergodic. The variable A(n, 1) is the inter-arrival time between the nth and 
(n + 1)st customers. We assume E(A(1, 1)) = r > 1. This ensures stability at the 
first queue: that waiting times of customers, {WA(n, 1)}nEZ, form an almost surely 
finite stationary and ergodic sequence [9]. (Details of Loynes' construction from 
which the previously mentioned stability follows may be found, e.g., in the book 
by Baccelli and Bremaud [3].) In terms of the arrival and service processes, the 
waiting time of the nth customer is given by the equation 

(1) WA(n,1)= sup S(i, 1) - A(i, 1), 0 . 
j<n-1 i=j 
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Lindley's recursion relates the inter-departure times to the inter-arrival times and 
service times via waiting times as follows: 

WA(n + 1, 1)= [WA(n, 1)+ S(n, 1) - A(n, 1)]+, 
(2) 

A(n, 2) = [A(n, 1)- S(n, 1)- WA(n, 1)]+ + S(n + 1, 1). 
The process A2 is input to the second queue from which we obtain A3 as the 

departure process, and so on. In general, Ak = {A(n, k)}nEz is the arrivals process 
at the kth queue with {WA(n, k)}neZ as the corresponding set of waiting times. 
Thus, A (n, k) is the inter-arrival time between the nth and the (n + 1)st customers 
at the kth queue and WA(n, k) is the waiting time of the nth customer at the kth 
queue. Using the result of Loynes [9] inductively, one obtains that Ak is stationary 
and ergodic for each k, with IE(A(1, k)) = r. Let T denote the queueing operator 
and represent the queueing tandem as Ak+1 = 7k (A1), k > 1. 

DEFINITION. A stationary and ergodic arrivals process I = {I(n)}nz with 
E(I (1)) = T > 1 is said to be a fixed point or an invariant distribution at rate 1/r 
for a ./GII/ queue whose service times are distributed as or, if T(I) equals I in 
distribution. 

The following theorem is the main result of the paper. 

THEOREM 1. Suppose that a ./GI/1 queue with service distribution a admits 
a rate I r fixed point I. Let A1 be a rate 1 / ergodic stationary arrival process to 
an infinite tandem of independent copies of the ./GI/1 queue. Then Tk(Al) -- I 
in distribution as k -> oo. 

We shall prove the theorem by coupling A' with an independent process I1, 
which has the same distribution as I. Similar methods, but different couplings, 
were used in [12-14] to establish the distributional convergence of departures in a 
tandem of queues with different assumptions on the service distribution. Chang [5] 
used the couplings of this paper to show that a queue which offers i.i.d. services 
of unbounded support can have at most one fixed point of a given rate. The related 
literature is surveyed in more detail at the end of the paper. 

2. The coupling. The process A' is coupled with a process II, distributed as 
the fixed point I. The assumptions are that A1 and I1 are mutually independent and 
also independent of the service processes {S(n, k)}nEZ,kEZ+ Let Ik = {I (n, k))}nE 
be the input at node k when I1 is input at node 1, and let WI (n, k) be the waiting 
time of the nth customer of Ik. Then, we have the following recursions: 

Wl(n + 1, k) = [WI(n, k) + S(n, k) - I(n, k)]+, 
(3) 
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A similar recursion for the process Ak is given by 

WA(n + 1, k) = [WA(n, k) + S(n, k) - A(n, k)]+, 
(4) 

A(n, k + 1) = [A(n, k) - S(n, k) - WA(n, k)]+ + S(n + 1, k). 

From (3) we obtain 

(5) I(n, k + 1)- WI(n +1, k) = I(n, k)-S(n, k)-Wl(n, k)+ S(n +1, k), 

and from (4) we obtain 

(6) A(n,k+ 1)- WA(n+ 1,k) = A(n,k)-S(n,k)- WA(n,k)+S(n+ 1,k). 

Subtracting (5) from (6) we get 

[A(n,k+ 1)- I(n,k + 1)]- [WA(n + 1,k)- WI(n + 1,k)] 
(7) 

= [A(n, k) - I(n, k)] - [WA(n, k)- WI(n, k)]. 

A little algebra now yields 

[WA(n +J,k)- WI(n + J,k)] 
J-1 

= j[A(n +j,k+1) -I(n+ j,k+l)] 

(8) i=O 

-[A(n+ j, k)-I(n+ j, k)]) 

+ [WA(n, k)- WI(n, k)]. 

Equation (8) will form the basis of the coupling argument. 
Throughout the rest of the paper, it is helpful to imagine that there are two 

queues at each node k, one for the A customers and one for the I customers. 
This makes explicit the notion that customers of one process do not influence 
the waiting of the customers of the other process. The coupling between the 
two processes merely consists of providing customers numbered n with identical 
service times, S(n, k), distributed i.i.d. over n and k. We will refer to each of the 
two queues as the A-queue and the I-queue, respectively. 

2.1. A coloring scheme. The next step is to introduce a coloring scheme for 
our processes. Since A1 and I1 are both of rate 1/r and are not identical (else 
Theorem 1 is trivially true), there must exist "points of crossing." That is, there 
exist disjoint random sets of integers 

A1 = {n E Z:A(n, 1)> I(n, 1)}, 

I1 = {n E Z: I(n, 1) > A(n, 1)}, 
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where A' dominates 11 or the other way around. Call these the sets of domination. 
The stationarity and ergodicity of (A', I') implies that of (Al, 11); therefore, the 
density of Al, 

d (A) =lim# of points of Al in [-N, N] 
N--oo 2N+1I 

is well defined and almost surely equal to a positive constant. Similarly, d(I 1 is 
almost surely a positive constant. 

Let r = sup{m <0:m ME Al) and define 

b(l, 1) =inf{m > r:M Eil 
r(I1, 1) = inf{m > b(l, 1):m ME Al). 

For n > 2, recursively define r (n, 1) and b (n, 1) as follows: 

b(n, 1) =inf{m > r(n - 1,9 1): M E I1, 

r(n, 1) = inf{m > b(n, 1) :m E A'). 

Let P (0, 1) = sup{m < b(1, 1) :m ME A 1) and b"(0, 1) = suptm < r?(0, 1) :m E 
For n <- 1, define P(n, 1) and b(n , 1) as 

b(n, 1) = suptm < P(n, 1):m MEl'} 

Finally., for n < 0 define 

r(n, 1) = inf{m: b(n, 1) < m <?(n, 1) and m E A'), 

(10) ~b(n, 1) =inf{m: P(n -1, 1) <m <b(n, 1) and M EI 

Of interest to us throughout this paper are the quantities r (n , 1) and b (n , 1); see 
Figure 1 for an illustration. 

4'.~~ ~~ Ai 2r, 

J ~ ~~~~~~~~~~~ 4j -4I.T9 

FIG. 1. A realization. 
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Since d(A1) > 0 and d(l1) > 0 a.s., r(n, 1) and b(n, 1) are almost surely finite 
for every n, and the infima in the above definitions are minima. Define 

,R(n, 1) = {k E Z: r(n, 1) k < b(n + 1, 1)}, 
(11) 

S(n, 1) = {k E Z: b(n, 1) < k < r(n, 1)} 

to be nonoverlapping intervals of integers which almost surely partition Z. Finally, 
let 

R(n, 1)= A A(k,1)-I (k, 1) and 
keR(n,1) 

(12) 
B(n, 1) = I (k, 1)-A(k, 1). 

keS(n, 1) 

We are now ready to introduce the coloring scheme. One thinks of the sets 
of domination A1 and j1 as the "support of red and blue bubbles," respectively. 
That is, r(n, 1) is the point at which the nth red bubble begins, R(n, 1) is the 
interval over which it is supported, and R(n, 1) is its volume. With reference to 
Figure 1, R(1, 1) is the sum of the lengths of the vertical red lines in eR(1, 1) = 
[r(l, 1), b(2, 1)). A similar interpretation may be made for the blue bubbles. 

It is crucial that for m =: n the shades of the mth and the nth red bubbles are 
distinct. Thus, we think of the nth red bubble as being colored with an nth shade 
of red. Similarly, one is able to distinguish between the various shades of blue. 
See Figure 1. 

2.2. Sketch of the proof. By the ergodicity of (A1, I'), the densities of the red 
and blue bubbles at the first stage are exactly equal. This follows from the fact that 
limnoo((El=-n A(j, 1) - I(j, 1))/(2n + 1)) = 0, which implies 

lim J=-n(A(, 1)- I(j, 1)){jEAi} n oo 22n + 1 

E -n (l(j 1) - A(j, l))l{jEl lim l=-n n-*oo 2n + 1 

that is, 
volume of red in [-n, n] volume of blue in [-n, n] A lim lim = d(l), n->oo 2n + n1oo 2n+l1 

where d(l) is the average volume of red (or blue) per arrival at stage 1. 
At any stage k, the arrival processes (Ak, Ik) are jointly ergodic. Hence, by the 

ergodic theorem, 

d E(A(1, k) -(1, k)|) 
2 
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is almost surely a constant and equals the average volume of red (or blue) per 
arrival at stage k. Chang [5] has shown 

E(IA(1, k)- I(1, k)) > E(IA(l, k + 1) - I(1, k + 1)1) 
for each k. Hence the d(k) are monotonically nonincreasing. Given that I1 is a 
fixed point for the queue, the desired weak convergence will follow from showing 
that d(k) converges to zero almost surely as k-- oo. 

We shall do this by observing the evolution of each individual red and blue 
bubble as the two processes pass through the series of queues. Thus, for each n, the 
quantities r(n, k), b(n, k), R (n, k), B(n, k), R(n, k) and B(n, k) are derived from 
the corresponding quantities at stage k - 1 and the service process at stage k - 1. 
For each k, the nth red (resp., blue) bubble is imagined to be colored with the nth 
shade of red (resp., blue). We then show that the red and blue bubbles cancel each 
other out and therefore that R(n, k) and B(n, k) decrease monotonically to zero 
as k--oo. 

The main difficulty in establishing the monotone decrease of R(n, k) and 
B(n, k) to zero is that it is possible for the red bubbles to accumulate far away from 
the blue bubbles and not cancel them out. We address this problem by showing that 
(i) the ordering between red and blue bubbles is always maintained, that is, they 
cannot overtake each other, and (ii) since the services are independent the two 
types of bubbles will be forced to interact and must therefore cancel each other 
out. The details follow. 

3. Preliminary lemmas. We simplify the notation as follows: Let 

d(n, k) = WA(n, k)- WI (n, k) Vn e Z, k e Z+, 
(13) 

da(n, k)= A(n, k)- I(n, k) Vn e Z, k e Z+. 

Mnemonically, dW (, .) is "the difference in waiting times" between customers of 
the two processes. In this notation (8) reads: 

J-1 

(14) dw(n+J,k)= o( +l)-+j,k+l)-da(n+j,k))+dw(n,k). 

LEMMA 1. The following hold for any n and k: 
(i) A(n, k) < S(n, k) ~ A(n, k + 1) = S(n + 1, k) and da(n, k + 1) < 0; 

(ii) I(n,k) < S(n,k) = I(n,k + 1) = S(n + 1,k) andda(n,k + 1) > 0. 

PROOF. Given that A(n,k) < S(n,k), it follows from (4) and the non- 
negativity of WA(n,k) that A(n,k + 1) = S(n + 1,k). From (3) we get 
I(n, k + 1) > S(n + 1, k). Therefore, da(n, k + 1) < 0, and similarly with (ii). 

D 
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LEMMA 2. For any n and k: 

(i) dw(n, k) > da(n, k) =~da(n, k ? 1) < O and dw(n + 1, k) > 0; 
(ii) dw(n, k) < da (n, k) ??da(n, k + 1) > 0 and dw(n + 1, k) < 0. 

Additionally, 

(iii) if under (i), S(n, k) > I (n, k), then da (n, k + 1) = 0; 
(iv) if under (ii), S(n, k) > A(n, k), then da(n, k ? 1) = 0. 

Hence, under (iii) and (iv), (14) implies dw(n + 1, k) = dw(n, k) - da (n, k). 

PROOF. Equations (3) and (4) imply (i). Consider (iii). From part (i) we have 
that da(n, k + 1) < 0. From part (ii) of Lemma 1 we have that da(n, k + 1) > 0. 
Therefore, da (n, k + 1) = 0. The proofs of (ii) and (iv) are similar. LI 

LEMMA 3. The following holdfor any n and k: 

(i) dw(n, k) > 0, da(n, k) > 0 =~ da(n, k ? 1) < da(n, k), dw(n + 1, k) < 
dW(n, k); 

(ii) d w (n, k) < 0, da (n, k) < 0 - da (n, k + 1) > da (n, k), d w(n + 1, k) > 
dW(n, k). 

PROOF. We prove (i). From (3) and (4) we get that 

da (n, k + 1) = [A (n, k) - WA (n, k) - S(n, k)]+ - [I (n, k) - WI (n, k) - S(n, k)]+. 

If [A(n, k) - WA(n, k) - S(n, k)]+ = 0, then da(n, k + 1) < 0 < da(n, k). 
On the other hand, if A(n, k) - WA(n, k) - S(n, k) > 0, then 

da(n, k + 1) = A(n, k) - WA(n, k) - S(n, k) - [I(n, k) - WI1(n, k) - S(n, k)]+ 

<A(n, k) - WA(n, k) - S(n, k) - (I(n, k) - WI(n, k) - S(n, k)) 
= da(n, k) - dW(n, k) < da(n, k). 

Using this in (14), we get 

dW(n ? 1, k) = da(n, k + 1) - da(n, k) ? dW(n, k) < dw(n, k). 

The same argument with reversed inequalities proves (ii). D 

LEMMA 4. The following holdfor any n and k: 

(i) dw(n + 1, k) > 0 - da(n, k + 1) < 0; 
(ii) da(n, k + 1) < 0=dw(n + 1, k) > 0; 

(iii) dw(n?+ 1, k) < 0=da (n, k + 1) > 0; 
(iv) da(n, k + 1) > 0=?dw(n + 1, k) < 0. 
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PROOF. We verify (i) and (ii). From (3) and (4) we get 

dW(n+ 1,k) > 0 e A(n, k) - WA(n, k) < I (n, k) - WI (n, k) 

'> A(n,k + 1) I(n,k + l) 

= da(n,k+ 1)<0 

and 

da(n,k+ 1) <O -> A(n,k)- WA(n,k) < I(n,k)- WI(n,k) 

WA(n + 1, k) > Wl(n + 1, k) 
= dw(n+l1,k)>O. O 

LEMMA 5. The following hold for any n and k: 

(i) dW(n + 1, k) > 0, da(n, k) > O dW(n, k) > dW(n + 1, k); 
(ii) dw(n + 1, k) < 0, da(n, k) < 0 =dw (n, k) < dw (n + 1, k). 

PROOF. Under hypothesis (i), Lemma 4 implies da (n, k + 1) < 0. Using this in 
dw(n, k) = dw(n + , k) - da(n, k+ l)+da(n, k) we getdW(n, k) > dw(n+ 1, k). 
The proof of (ii) is similar. [I 

LEMMA 6. The following holdfor any n and k: 

(i) dw(n, k) > 0, da(n, k) < 0 : dW(n + 1, k) > 0, da(n, k + 1) < 0; 
(ii) dW(n, k) < 0, da(n, k) > 0 = dw(n + 1, k) < O, da(n, k + 1) > 0. 

The proof follows from Lemma 2. 

4. The evolution of the bubbles. From the processes (A1, I) and (A2, 12) 
and the service process at node 1, we deduce the status of the red and blue bubbles 
at node 2. It eases the exposition to do this gradually, to first consider the evolution 
of bubbles in certain simple situations. One can isolate three basic possibilities for 
bubble evolution and all other possibilities can be described in terms of these three. 

Possibility a: bubbles can only move to the right. Consider only the first red 
bubble and ignore all others, that is, from the processes A1 and I1 construct the 
process A' = {A(n, l)}neZ as follows: A(n, 1) = A(n, 1) for all n E R(1, 1) and 
A(n, 1) = I(n, 1) for all n ? ((1, 1). We then modify the definition of ,R(1, 1) 
and let it equal the set {/: r(l, 1) < 1 < q}, where q = min{n > r(l, 1): A(k, 1) = 
I(k, 1), Vk > n}. Since A(n, 1) > I(n, 1) for each n E Z, WA(n, 1) < WI(n, 1) 
and A(n,2) > I(n,2). For k = 1,2, let da(n,k) = A(n,k) - I(n,k) and 

dW(n, k) = WA(n, k) - WI (n, k). 
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Parenthetically, although the process A1 is not stationary, it is rate stable. 
That is, 

E=nA(, 1) 
lim =-n = > 1, n- o 2n + 1 

which, via equation (1), implies that for any N E Z there is an n > N such that 
WA(n, 1) = 0. 

Define q' = inf{n A(k, 2) = I(k, 2), Vk > n}. To see that q' < oo, let i = 
inf{n > q: WI(n, 1) = 0}. Note that the stability of the I-queue implies that i < oo 
a.s. Since W (n, 1) > WA(n, 1) for every n, WI(i, 1) = 0 implies WA(i, 1) = 0. 
This and the fact that A(n, 1) = I(n, 1) for all n > i > q, give us recursively 
via (14) that A(n,2) = I(n,2) and WI(n, 1) = WA(n, 1) for all n > i. In 
particular, we obtain q' < i < oo a.s. 

Now define r(l, 2) = infn < q': A(n, 2) > I(n, 2)}. The following lemma 
will show that r(l, 2) is well defined; indeed, it lies in the interval [r(l, 1), q']. 
Define 9(1,2) to be the set of all integers in [r(l,2),q']. Now the set of n 
for which A(n, 2) > I (n, 2) is included in ~R(1, 2). Therefore one may think of 
<?(1, 2) as the support of the red bubble at node 2. For k = 1, 2, let R(1, k) = 
EnER(1,k) da(n, k). 

LEMMA 7. The following hold: 

(i) r(l, 2) > r(1, 1); 
(ii) R(1, 1) = R(1, 2). 

PROOF. Since A(n, 1) = I(n, 1) for n < r(l, 1) it follows that A(n, 2) = 
I (n, 2) for n < r(l, 1). Therefore r(l, 2) > r(l, 1). 

Next, we know that dw(n, 1) = 0 for n < r(l, 1) and for n > i. Since 
max{q, q'} < i, it follows that R(1, 1) C [r(l, 1), i] and R(1,2) C [r(l, 1), i]. 
Therefore, from (14) we get 

dW(i + 1,1) = da(n 2)- a(n, 1) + a ) dw(r(1, 1), 1), 
n=r(l, 1) 

which implies 

(15) R(1,2)= E da(n,2)= da(n, 1)= R(l, 1). 
nER(1,2) nER(l,1) [- 

REMARK. We shall interpret r(1, 2) > r(l, 1) as "a bubble can only move to 
the right," and R(1, 1) = R(1, 2) as "the volume of the red bubble is preserved." 
However, the next basic possibility shows that when there are red and blue bubbles 
present, one of them can move to the right and cancel some or all of the volume of 
the other. 
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Possibility B: neighboring bubbles of opposite color may cancel parts of each 
other. This time consider only the first blue and the first red bubbles. That is, set 
A(n, 1) = A(n, 1) for all n E 2(1, 1) U <R(1, 1) and A(n, 1) = I(n, 1) otherwise. 
We then modify the definition as follows: <R(1, 1) = [r(1, 1), q], where q = 
min{n > r(l, 1): A(k, 1)= I(k, 1) Vk > n} and B(1, 1) = [b(l, 1), r(1, 1)- 1]. 

LEMMA 8. Let b = sup{n:I(n,2) > A(n,2)} and r = inf{n:A(n,2) > 
I(n, 2)}, with the conventions sup{0} = -o and inf{0} = oo. Suppose that 
b and r are finite. Then: 

(i) b < r and 
(ii) I(n, 2) < A(n, 2)forn > r and I(n, 2) > A(n, 2)forn < b. 

PROOF. To prove (i) by contradiction, suppose that b > r. We claim r > 
r(1, 1), and establish it as follows. Since dW(b(1, 1), 1) = 0 [because da(n, 1) = 0 
for n < b(l, 1)] and da(n, 1) < 0 for all n E [b(l, 1),r(l, 1)- 1], it follows 
recursively from Lemma 6 that da(n, 2) < 0 for all n E [b(l, 1),r(l, 1) - 1]. 
Therefore r > r(1, 1). 

Now, da(r, 2) > implies d(r+ 1, 1) < 0, by Lemma 4, and since r > r(l, 1), 
we have that da (n, 1) > 0 for all n > r. Therefore, from Lemma 6 we get that 
da (n, 2) > 0 for n > r. This contradicts b > r. 

In the above we have shown that da(n, 2) > 0 for n > r. This proves the first 
part of (ii). Since b < r by part (i), the definition of r implies I(n, 2) > A(n, 2) 
for n <b. D 

The above lemma shows that "bubbles do not overtake each other." The next 
two lemmas make this clearer. 

Suppose that b and r defined above are both finite. Define b(l,2) 
inf{n < b:I(n,2) > A(n,2)} and r(l,2) = r. Also define 2 (1,2) = {n E 
[b(l, 2), r(1,2) - 1]} and R(1,2) = {n e [r(l, 2), q']}, where q' = min{n > 
r(1,2): A(k, 2) = I(k, 2), k > n}. As in Case a, it is easy to see that q' < oo. 
Let B(1, 2) = - Ene(1,2) da(n, 2) and R(1, 2) = En-e(1,2) da(n, 2). 

LEMMA 9. Suppose that b and r are both finite, then: 

(i) b(l, 2) > b(1, 1) and r(l,2) > r(l, 1), 
(ii) B(1,2) < B(1, 1) and R(1, 2) < R(1, 1) and 

(iii) B(1, 2)- B(1, 1) = R(1, 2)- R(1, 1). 

PROOF. It follows from Case a that b(l, 2) > b(1, 1), and from the proof of 
Lemma 8 we know that r(l, 1) < r = r(1, 2). This proves (i). 

Now since dW(b(1, 1), 1) = 0 and da(n, 1) < 0 for n e [b(l, 1), r(l, 1) - 1], 
Lemma 6 recursively implies that dw (r (1, 1), 1) > 0. 
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CASE I [dw(r(l, 1), 1) = 0]. This and the fact that da(n, 1) > 0 for n > 

r(l, 1) imply recursively via Lemma 6 that da(n, 2) > 0 and dW(n, 1) < 0 for 
n >r(l, 1). Therefore B(1,2) = 1 da(n,2) andfrom 

nrb(1,1)-1n,2)an fo 

dw((lr 1), 1) = C da(n, 2) da(n, 1) + aw(b(1, 1), 1) 
n=b(l, 1) 

we get that B(1, 2) = - Er (, 1) dIa(n, 1) = B(1, 1). Let i > q' be the first time 
that the I-queue idles. Since dw(n, 1) < O for n > r(1, 1) the fact that WI(i, 1) = 0 
implies that WA (i, 1) = 0. Therefore from 

dw(i, 1) = L da(n 2)- da(n, 1) + aw(r(1 1), 1) 
n=r(1, 1) 

we get that R(1, 2) = C~(l) 1- ja(n, 2)= Enr(l,l) ai (n, 1) = R(1, 1). In the 
we gt tht R 1, 2 = n =r( dn=,1) ) 

preceding step we have used that both 9 (1, 1) and R (1, 2) are contained in 
[r(1, 1), i - 1]. Thus when dw(r(1, 1), 1) = 0, we have proved both (ii) and (iii). 

CASE 2 [dw(r(l, 1), 1) > 0]. From (14) we get 
r(l,l)-l 

(16) 0<w(r(l,l1), 1) : da(n, 2)_d a(n,l1) Ldw(b(l,l), 1) 
(16) n=b(1,1) 

= -B'(1, 2) + B (1, 1), 

where B'(1,2) n= bj(l,)1 a(n, 2) is the volume of blue at the second 

stage in [b(1,1), r(1, 1) - 1]. Note that da(n, 1) <0 and da(n,2) <0 for 
n E [b(1, 1), r(1, 1) - 1], the first by definition of b(1, 1) and r(1, 1) and the 
second because r(1,2) > r(1, 1). So, we only have blue in this interval on both 
the input and output sides as shown in (16). 

Let 1 be as defined in Lemma 8, and recall that b < = r(l, 2). If b <r(l, 1), 
then since da (n, 2) > 0 for n > b, it follows that B'(1, 2) = B(1, 2) and (16) gives 

Else, let B"(1, 2) = - Cin=r(ll) da(n, 2) be the amount of blue volume to the 
right of r(l, 1) and note that B(1, 2) = B'(1, 2) + B"(1, 2). We shall show that 
B"(1,2) <dw(r(1, 1), 1), which when used at (16) gives B(1, 1) > B'(1,2) ? 
Bl(l, 2) = B(1, 2). Accordingly, consider 

dW(b + 1, 1) - C cda(n, 2) - da(n,1 ) = dw(r(1, 1), 1), 
n=r(1j 1) 

n==r(1, 1) 
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Since d(b, 2) < , by Lemma 4, dw(b + 1,1) > 0 and En=r( )da(n, 1) > O, by 
definition of r(l, 1). Therefore, it follows that B"(1, 2) < d (r(1, 1), 1) and that 
B(1, 2) < B(1, 1). 

We shall now prove that B(1, 1) - B(1, 2) = R(1, 1) - R(1,2). This will 
establish both part (iii), and in conjunction with B (1, 2) < B(1, 1) it will also show 
that R(1,2) < R(1, 1). 

Let i = min{n > q: W1 (n, 1) = 0}. By the stability of the I-queue, it again 
follows that i < oo. It also follows (as before) that dw(i, 1) = 0. We use this and 
the fact that dw(b(1, 1), 0) = 0 as follows: 

i-i 

O = dW(i, 1)= da(n, 2)-da(n, 1)+ dW(b(l, 1), 1) 
n=b(l,1) 

= R(1, 2)- B(1,2) - R(, 1) + B(1, 1) 

or 

R(1, 1)- R(1, 2) = B(1, 1)- B(1, 2). 

This concludes the proof of the lemma. D 

REMARK. Again, the lemma establishes that bubbles only move to the 
right, that their volumes do not increase, and that they do not overtake one 
another. Volume cancellations are equal and happen, in this case, when the blue 
bubble moves into the red one. This movement is manifested by the condition 
dW(r(1, 1), 1) > 0. For, this is the only condition under which B(1, 2) < B(1, 1). 

To conclude Possibility ,B, we need to consider the case that at least one of 
b and r is not finite. Accordingly, we state the following definitions: 

(a) If b =-oo and r < oo, define r(1,2) = r, b(1,2) = r(l,2), S(1,2) = 0 
and R (1, 2) = [r(l, 2), q'], where q' is as defined earlier. 

(b) If b > -oo and r = oo, define b(1,2) = b, r(l,2) = oo, B(1,2) 
[b(1,2),q"], where q" = min{n > b(1,2):A(k, 2) = I(k,2) Vk > n} and 
J(1,2)= 0. 

(c) If lbl = Irl = oo, define b(1, 2) = r(l, 2) = oo and o(1, 2) = <(1, 2) = 0. 
These definitions ensure that bubble movements are always to the right. The 

next lemma shows that bubble volumes do not increase in this case either. 

LEMMA 10. Suppose at least one of b and r is not finite. Then B(1,2) < 
B(1, 1), R(1, 2) < R(1, 1) and B(1, 1) - B(1, 2) = R(1, 1)- R(1, 2). 

PROOF. Since either B(1,2) or R(1,2) is 0 in this case, the lemma is 
proved if we establish B(1, 1) - B(1, 2) = R(1, 1) - R(1, 2). But, this is simple. 
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Let i = min{n :da(k, O) = 0 = dW(k, 0) Vk > n}. Note that the stability of both 
queues ensures that i < oo. From 

i-1 
0 = dW(i, 1) = E da(n, 2) - da(n, 1) + d(b(, 1), 1), 

n=b(l, 1) 

= R(1,2)- B(1, 2)- R(1, 1)+ B(1, 1) 

or 

R(1, 1)- R(1, 2) = B(1, 1)- B(1, 2), 

we obtain a proof of the lemma. D 

The last of the three possibilities concerns the mixing of two neighboring blue 
(red) bubbles, after the red (resp. blue) bubble between them has been cancelled. 

Possibility y: the mixing of bubbles of the same color. This time consider the 
first two blue bubbles and the first red bubble only. That is, set A (n, 1) = A (n, 1) 
for n E (S(1, 1) U 3(1, 1) U S(2, 1)) and A(n, 1) = I(n, 1) otherwise. Again, 
we modify the definition of S(2, 1), setting it equal to {b(2, 1) < n < q}, where 
q = minn > b(2, 1): A(k, 1) = I(k, 1) Vk > n}. 

Given the preceding discussion of possibilities a and ,, the dynamics of bubble 
evolution under y are easy to understand. 

Define bl = inf{n: A(n, 2) < I(n, 2)}, b2 = sup{n: A(n, 2) < I(n, 2)}, r1 = 
inf{n : A(n, 2) > I(n, 2)}, and r2 = sup{n : A(n, 2) > I(n, 2)}. Following earlier 
conventions, the infimum (supremum) of the empty set equals oo (resp. -oo). 

LEMMA 11. Suppose bl, b2, rF and r2 are all finite. Then exactly one of the 
following must be true: 

(i) bl _< 2 < l < r2, 
(ii) b1 < rl < r2 < b2 and da(n, 2) > O for all n E [rl, r2], and 

(iii) rl <r2 < bi < b2. 

PROOF. First suppose that bl < rl, but that rl < b2 < r2. From the proof of 
Lemma 8 we know that rl > r(l, 1). 

CASE 1 [rF > b(2, 1)]. This implies F2 > b2 > b(2, 1). Since da(b2, 2) < 0, 
by Lemma 4 we get that dw (b2 + 1, 1) > 0. This together with the two facts: 

b2 > b(2, 1), and da (n, 1) < 0 for all n > b(2, 1) implies, recursively via Lemma 6, 
that da(n, 2) < 0 for all n > b(2, 1). This contradicts r2 > b2. 
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CASE 2 [r(l, 1) < rl < b(2, 1)]. Lemma 4 implies dW(rl + 1, 1) < 0. Since 
da(n, 1) > 0 for n e [r(l, 1), b(2, 1) - I], Lemma 6 implies da(n,2) > 0 for 
such n. This further implies b2 > b(2, 1). Now a similar argument to the one in 
Case 1 makes it impossible for there to be an n > b2 such that da(n, 2) > 0. Again, 
this contradicts r2 > b2. 

Therefore, if bl < rl, either bl < b2 < rl < r2 [this proves (i)] or bl < r1 < 
r2 < b2 [this proves part of (ii)]. 

To finish (ii), simply note that if there is a b E [ri, r2] such that da(b, 2) < 0, 
replacing b2 with b in the arguments of Cases 1 and 2 above will imply that either 
b < rl or b > r2. 

Finally, suppose that rl < bl. For contradiction suppose that b1 < r2. The 
preceding arguments make it clear that r\ > r(l, 1), hence b1 > r(l, 1). We first 
claim that bl > b(2, 1). If not r(l, 1) < rl < bl < b(2, 1). But, da(rl, 1) > 0 
implies dw(ri + 1, 1) < 0 (by Lemma 4); and, in conjunction with da(n, 1) > 0 
for n E [r(l, 1), b(2, 1) - 1] this further implies (via Lemma 6) that da(n, 2) > 0 
for n E [r(l, 1), b(2, 1) - 1]. This contradicts bl < b(2, 1). 

Thus, our assumption that b1 < r2 leads to the conclusion b(2, 1) < bl < r2. 
Since da(b1,2) < 0, Lemma 4 implies dw(bl + 1, 1) > 0. This and the fact 
da(n, 1) < 0 for n > b(2, 1) imply (via Lemma 6) that da(n, 2) < 0 for all such n. 
This contradicts r2 > b1. Therefore, if rl < bl, it must be that r < r2' < bl < b2 
and the lemma is proved. O 

REMARK. The essence of the lemma is that bubbles do not overtake or 
intersperse between one another. That is, there are uninterrupted runs of blue and 
red volumes whenever these are not zero. This intuitive statement is made more 
precise in the next few lemmas. 

Suppose that rl, r2, b1 and b2 are all finite and bl < rl < r2 < b2. Define 
b(1,2) = , r(1,2) = rl and b(2, 2) = minn : 2 < n < b2, d(n, 2) < 0}. Also 
define B(, (1,2) = - ,2) da(n, 2) R(1,2) - (,2)= E n, 2) and B2 2) 
deine B (1 2) - - z--.,n=b(1,2) ' 
- b(2.2) da (n, 2). The previous lemma implies B(1, 2) > 0, R(1, 2) > 0 and 
B(2, 2) > 0. 

LEMMA 12. Suppose that rl, r2, bl and b2 are all finite and bl < rl < r2 < 
b2. Then: 

(i) b(l, 2) > b(1, 1), r(l, 2) > r(1, 1) and b(2, 2) > b(2, 1), 
(ii) B(l, 2) < B(1, 1), R(1, 2) < R(1, 1) and B(2, 1) < B(2, 2), and 

(iii) R(1, 1) - R(1, 2) = B(1, 1) + B(2, 1) - B(1, 2) - B(2, 2). 

PROOF. Statement (i) follows from Possibilities a and fB and the proof of 
Lemma 11. 
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It again follows from Possibility B that B(1, 2) < B(1, 1). We shall prove the 
lemma by showing that B(2, 2) < B(2, 1) and R(1, 1) - R(1,2) = B(1, 1) + 
B(2, 1) - B(1, 2) - B(2, 2). We proceed by establishing some preliminary claims. 

CLAIM 1. For b = max{n E [b(1, 2), r(l, 2) - 1] da(n, 2) < 0}, it holds that 
b < b(2, 1). 

Suppose to the contrary b > b(2, 1). Then, since da (b, 2) < 0, Lemma 4 implies 
dW(b + 1, 1) > 0. And since da(n, 1) < 0 for all n > b(2, 1), this further implies 
via Lemma 6 that da(n, 2) < 0 for all n > b. This contradicts the finiteness of r2 
and establishes the claim. 

CLAIM 2. dW(b(2, 1), 1) < 0. 

Suppose dW(b(2, 1), 1) > 0. Since da(n, 2) < 0 for all n > b(2, 1), Lemma 6 
tells us that da(n, 2) < 0 for all n > b(2, 1). Therefore r(1, 2) < b(2, 1). Now, 
given that da(r(1, 2), 2) > 0, Lemma 4 implies dW(r(1,2) + 1, 1) < 0, and since 
r(l, 2) > r(l, 1), this further implies (via Lemma 6) that dw(n, 1) < 0 for n E 
[r(1, 2) + 1, b(2, 1)]. This contradicts our assumption that dw(b(2, 1), 1) > 0 and 
proves the claim. 

Now, given that b < b(2, 1), it follows from the definition of b(2, 2) that 
da(n, 2) > 0 for all n E [b(2, 1), b(2, 2) - 1]. Therefore (14) gives 

(17) d(i +1,1)= E da(n,2)-da(n, l)+ d(b(2, 1),1), 
n=b(2, 1) 

where i = min{n > b(2, 1): dW(k, 1) = 0 Vk > n}. Rewriting (17) we get 
b(2,2)-1 

0= L da(n,2)-B(2,2)+B(2, l)+ w(b(2, 1), 1) 
n=b(2, 1) 

or 
b(2,2)-1 

B(2, 1)- B(2, 2) = -dw(b(2, 1), 1)- d(n, 2). 
n=b(2, 1) 

If da(n, 2) = 0 for all n E [b(2, 1), b(2, 2) - 1], the above equation immediately 
gives B(2, 1) - B(2, 2) = -d(b(2, 1), 1) > 0. 

Else, r2 > b(2, 1) for r2 as defined earlier. In this case note that ,=b(2 1 
d) (n, 

2) = r=(2 ,1da(n, 2). Therefore it suffices to show -d(b(2, 1), 1) - 

Er=2 ) da(n, 2) > 0 in order to conclude B(2, 1) > B(2, 2). En=b(2, 1) .. 
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But, this follows immediately from considering 
r~2 i2 

dw(b(2 1), 1) =dw(2 + 1, 1)- d1)(n,2)+ da (n, 1 
n=b(2, 1) n=b(2, 1) 

r2 

edw (b (2, 1), 1)+ ): da(n, 2) 
n=b(2, 1) 

r3 dw (w2+ 1, 1 + > C da (n, 1) < 0 
n=b(2, 1) 

since da (q2, 2) > 0 implies dw (z2 ? 1, 1) <0 (from Lemma 4), and dja (n, 
1) < 0 because, to the right of b(2, 1) on the input side, blue is all there is. 

Finally, from 

O = d(i+1 i I)= d a(n, 2) - da(n,l)+ dw(b(l,l), 1) 
n=b(l, 1) 

and the fact that dw(b(1, 1), 1) = 0 it immediately follows that R(1, 1) - R(1, 2) = 
B(1, 1) + B(2, 1) - B(1, 2) - B(2, 2). This completes the proof of the lemma. D 

Suppose ?1,?2,bj and b2 are all finite and b1 < b2 < ?1 < 2. Then 
define b(1,2) = b1, r(l,2) = ij and b(2,2) = cx. Also define B(1,2) = 

n=b(1,2) d" nn=2),R(l,2) Z r (l2) da(n, 2) and set B(2, 2) = 0. 

LEMMA 13. If r1, r2, b1 and b2 are allfinite and bl < b2 <ril < r2, then: 

(i) b(1,2) > b(l,l1), r(1,2) > r(1, 1) and b(2, 2) > b(2,l1), 
(ii) B(1,2) < B(l, 1) and R(l,2) < R(1,l ), 

(iii) R(1, 1)- R(1, 2) B(1, 1) ? B(2, 1)- B(1, 2)- B(2, 2). 

PROOF. Part (i) follows from Possibilities a and 8, and clearly b(2, 2) = oc > 
b(2, 1). 

It follows as in the proof of Lemma 12 that dw(b(2, 1), 1) < 0. (In words, this 
means no blue volume from the first blue bubble enters the second blue bubble.) 
As a consequence, it is straightforward to infer from Possibility f that B(1, 2) < 

B(1, 1). Since B(2, 2) = 0, the rest of the lemma will follow from showing 
R(1, 1) - R(1, 2) = B(l, 1) ? B(2, 1) - B(1, 2). Because dw(b(1, 1), 1) = 0, this 
follows trivially from 

n=b(l,1) 

wherei=min{n>b(2,1):dw(k,l)=OVk>n}. D 
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Next suppose bL, b2, F, and F2 are all finite and Fl < F2 < LI < b2. Then 
define b(1, 2) = r(1, 2) = Fl and b(2, 2) = b1. Set B(1, 2) = 0, define R(1, 2) 

~-r2 b aan ) 
2n=r(1l2)da (n, 2) and B(2, 2) = - >n=b(2,2)a (1, 2). 

LEMMA 14. If r1,r2,b1 and b2 are allfinite and Fl <F 2 < bl <1b2, then: 

(i) b (1, 2) > b (1, 1), r (1, 2) > r (1, 1) and b (2, 2) > b (2, 1), 
(ii) R(1, 2) < R(1, 1) and B(2, 2) < B(2, 1), 

(iii) R(l, 1) - R(l, 2) = B(1, 1) + B(2, 1) - B(1, 2) - B(2, 2). 

The proof follows from Case 8, similarly as in the proof of Lemma 13. 

Possibility y': only the red bubble survives. Suppose that L1 and b2 are not fi- 
nite. In this case, there is no blue at the second stage. Define b(l, 2) = r(l, 2) = Fj 
and set b(2,2) = co. Also set B(1,2) = B(2, 2) = 0 and define R(1,2) = 

Lnr(,2) da(n, 2). 
It is clear that b(1, 2) > b(1, 1), r(1, 2) > r(l, 1) and b(2, 2) > b(2, 1). 

LEMMA 15. Suppose that bl and b2 are notfinite. Then R(l, 2) = R(l, 1) - 
B(1,1) - B(2,l). In particular, B(1,2) < B(1,1), R(1,2) < R(1,1) and 
B(2, 2) <B(2, 1). 

PROOF. Consider the equation 

o = dw~(i + I, 1) = E da (n, 2) - Za (n, 1) + dw (b (1, 1), 1), 
n=b(l,1) 

where i = min{n > b(2, 1): dw(k, 1) = 0 Vk > n}. Given that dw(b(l, 1), 1) = 0, 
it follows immediately that R(1,2) = R(l, l) - B(1, 1) - B(2, 1). D 

Possibility y *: the red bubble is completely cancelled. Suppose that rFI and F2 
are not finite. In this case, there is no red at the second stage. Define b(l, 2)= 
r(l, 2) = b(2,2)=b1 and 

Enb(1,2) da(n, 2) 
B(l,l1)+B(2,1~) 

B(2, 2)=B(2, 1) -n=b(1,2) 
B(l, 1) ? B(2, 1) 

R(l,2)=0. 
Note that it is possible for r(1, 2) < r(l, 1) and b(2, 2) < b(2, 1). This is a 

crucial deviation from all previous cases, necessitated by reasons detailed in the 
remark after the lemma. 
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LEMMA 16. Suppose that rl and r2 are notfinite. Then: 

(i) b(1, 2) < r(1, 2) < b(2, 2), 
(ii) B(i, 2) < B(i, )for i = 1,2 and R(1,2) < R(1, 1) and 

(iii) B(1, 1) + B(2, 1)- B(1, 2)- B(2,2)) = R(, 1). 

PROOF. Statement (i) follows by definition, while (ii) and (iii) follow from 
i 

O = dW(i + 1, 1) = j da(n, 2) - da(n, 1) + dW(b(l, 1), 1), 
n=b(l, 1) 

where i = min{n > b(2, 1) dw(k, 1) = 0 V1k > n}. Observing that dw(b(l, 1), 
1) = 0 completes the proof of the lemma. D 

REMARK. The definitions of quantities at the second stage are so as to 
preserve orderings between bubble start points and to ensure that bubble volumes 
do not grow. The above lemma shows that when the red bubble is fully cancelled, 
it nullifies an equal amount of blue from the blue bubbles put together. The amount 
of volume taken out of each blue bubble is proportional to its original size. Thus, 
we do not keep an account of whether or not a specific blue bubble contributed 
to the cancelling of the red. This is both unnecessary and can lead to needless 
complication, as seen below. 

First, without elaboration, here are the ways (and concomitant conditions) in 
which the red bubble can be cancelled: (i) the first blue bubble cancels all of 
the red bubble [dW(r(l, 1), 1) > R(1, 1) and dW(b(2, 1), 1) > 0], (ii) each of the 
blue bubbles contributes to the cancellation of the red bubble [dw(r(l, 1), 1) > 0, 
dw(b(2, 1), 1) = dW(r(l, 1), 1) - R(1, 1) < 0, and da(n, 2) < 0 for n > b(2, 1)] 
and (iii) only the second bubble cancels the red bubble [dW(r(l, 1), 1) = 0, 
-dW(b(2, 1), 1) = R(1, 1) and da(n, 2) > 0 for n > b(2, 1)]. 

Note that in situations (ii) and (iii) above dW(b(2, 1), 1) < 0; or, in words, no 
blue volume enters the second blue bubble. This ensures that the two shades of blue 
do not mix. But, if dW(b(2, 1), 1) > 0, as can happen in (i), the two shades of blue 
do mix. This can make it impossible to decide b(2, 2) so as to satisfy the following 
conditions simultaneously: (a) B(1, 2) < B(1, 1) and (b) B(2, 2) < B(2, 1). 

For example, suppose that B(1, 1) = B(2, 1) = 100, R(1, 1) = 50, dW(r(1, 1), 
1) = 100 and dw(b(2, 1), 1) = 25. Also suppose that da(l, 2) = 25 for some 
1 E [r(l, 1), b(2, 1)- 1] and that da(m, 2) = 100, da(n, 2) = 25 for some m < n 
[b(2, 1), oo). Observe that no choice of b(2, 2) can satisfy conditions (a) and (b) 
above. 

A simple way out is to set r(l, 2) = b(2, 2) = b(1, 2), and divide the volume of 
blue on the output side proportionately among the two blue bubbles. Although 
this choice can cause r(1, 2) < r(1, 1), it must be seen as a consequence of 
convenience. It will be clear that this causes no problems in the rest of the 
argument. 
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4.1. The equilibrium evolution. Using the ideas of the previous section, 
we will now describe the evolution of the bubbles in equilibrium. Consider 
the processes A1, I1 and {S(n, l)}nZ. The quantities r(n, 1), b(n, 1), R(n, 1), 
B(n, 1), R(n, 1) and ?(n, 1) are as defined in (9), (11) and (12). 

We describe the procedure for determining r(n, 2) and b(n, 2) for each n E Z. 
From these one can deduce the quantities R(n, 2), B(n, 2), R (n, 2) and S(n, 2). 
As in the previous section the sequence {dW(n, l)}ne, plays a key role in 
the determination of r(n,2) and b(n,2). For what follows, it is helpful to 
make a connection between the sign of dw(n, 1) and what it means for bubble 
movements at n. Accordingly, depending on whether dW(n, 1) = 0, dw(n, 1) < 0 
or dw (n, 1) > 0, there is a movement from n - 1 to n, respectively, of nothing, red 
or blue of volume Id (n, 1)1. 

Consider 8 = {n: da(n, 2) > 0 infinitely often}. By the joint ergodicity of 
A2 and I2, P (8) = 0 or 1. If P (8) = O then da (n, 2) < 0 for every n a.s. [ergodicity 
clearly rules out that da(n, 2) < 0 for finitely many n with positive probability]. 
But this last fact together with E(A(n, 2)) = E(I(n, 2)) implies that A2 = 12 a.s. 
Thus, if P () = 0 the proof of Theorem 1 is complete. 

Therefore, suppose P(8) = 1. Note that this implies the co-existence of 
infinitely many blue and red bubbles at the second stage. We will now give a 
procedure for determining b(1, 2) and r(1, 2), and hence for b(n, 2) and r(n, 2) 
for every n. 

First consider the processes A2 and I2. These are jointly ergodic, and hence it is 
possible to apply the procedure of Section 2.1 and obtain bubbles. Let b(n, 2) 
and r(n, 2) be the start points of the bubbles, and let B(n, 2) and R(n, 2) be 
the corresponding bubble volumes. Note that r(n - 1, 2) < b(n, 2) < r(n, 2) for 
every n. We need variables e(n, 2) and f(n, 2) which mark the end points of the 
bubbles in order to proceed. Thus, let 

e(n, 2) = max{k e [b(n, 2), r(n, 2) - 1]: da(n, 2) < 0}, 

f(n, 2) = max{k E [r(n, 2), b(n + 1, 2) - 1]: da(n, 2) > 0}. 

Note that b(n,2) < e(n,2) < r(n, 2) < f(n,2) < b(n + 1,2) for every n. 
With these definitions, the following procedure relates r(-,2) and b(.,2) to 

(-, 2) and b(, 2). 
Determining b(1, 2). Clearly b(1, 1) E [b(k, 2), b(k + 1, 2) - 1] for some k. 

(a) If b(1, 1) E [b(k, 2), e(k, 2)], set b(1, 2) = b(k, 2). 
(b) If b(l, 1) E [e(k, 2) + 1, (k, 2)] and r(1, 1) < f(k, 2), set b(1,2)= 

r(k, 2). 
(b') If b(1, 1) E [e(k, 2) + 1, r(k, 2)] and r(l, 1) > f (k, 2), set b(l, 2) = b(k + 

1,2). 
(c) If b(1, 1) E [r(k, 2) + 1, f(k, 2)] and r(1, 1) E [b(1, 1) + 1, f (k, 2)], set 

b(1, 2) = r(k, 2). 
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(c') If b(1, 1) E [J(k, 2) + 1, f(k, 2)] and r(1, 1) 4 [b(1, 1) + 1, f(k, 2)], set 
b(l, 2) = b(k + 1, 2). 

(d) If b(l, 1) E [f(k, 2) + 1, b(k + 1, 2) - 1], set b(l, 2) = b(k ? 1, 2). 

Determining r(1, 2). Clearly r(1, 1) e [?(k, 2), i (k + 1,2) - 1] for some k. 

(e) If r(l, 1) E [iz(k, 2), f(k, 2)], set r(1, 2) = i (k, 2). 
(f ) If r (1, 1) E [f (k, 2) + 1, b(k + 1, 2)] and b(2, 1) < e(k + 1, 2), set r (1, 2) 

b(k + 1,2). 
(f') Ifr(I,,I)EE[f(k, 2) +I, b(k +1, 2)3and b(2, 1)>> (k +1, 2), set r(1,2)== 

i~(k + 1,2). 
(g) If r(l, 2) E [b(k + 1, 2) + 1, (k + 1, 2)] and b(2, 1) E [r(l, 1) + 1, i(k + 

1,2)], set r(1, 2) = ,(k + 1,2). 
(g') If r(l, 1) E [b(k + 1, 2) + 1, i(k + 19 2)] and b(2, 1) B [r(l, 1) + 19 e(k + 

19 2)], set r(l, 2) = r"(k + 1, 2). 
(h) If r(1, 1) E [j(k, 2) + 11 T(k + 1,2) - i], set r(l, 2) = i(k + 1,2). 

LEMMA 17. Ifb(1,1) < b(p, 2) then b(1,2) < b(p, 2). 

PROoF. If p = k, for k as defined in the above procedure, then from case (a), 
b(Ig 1) = b(p, 2) =b(1,2). If p > k + 1, then note that i(k, 2) <b (k + 1,2) < 

b(p, 2), and hence by the procedure for determining b( 1, 2), it follows that 
b(l, 2) < b(k + 19 2) < b(p, 2). FO 

LEMMA 18. For every n E Z, r(n, 2) < b(n + 1, 2) I<r(n + 1?,2). 

PROOF. We prove r(n, 2) < b(n + 1, 2), the other inequality is similarly 
established. By construction of r(n, 2) and b(n, 2), these points are always at the 
start point of a red or a blue bubble at the second stage [i.e., they equal some i (k, 2) 
or b(m, 2)]. Further, they each move either to the nearest start point on the left, or 
to one of the nearest two start points on the right. 

Now, r(n, 1) < b(n + 1, 1). Therefore, every time r(n, 2) < r(n, 1) [i.e., r(n, 1) 
moved to its nearest left start point], it follows that r(n, 2) < b(n + 1, 2). This 
covers cases (e) and (g), which are the cases when r(n, 2) < r(n, 1). 

Under (f), r(n, 2) = b(k + 1,2) for some k. And our procedure for b(n + 1, 2) 
[cases (a) and (d)] sets b(n + 1,2) = b(k + 1,2). 

Under (f'), r(n, 2) = i"(k + 1, 2) for some k. Our procedure [cases (b), (b'), (c) 
and (c')] determines that b(n + 1,2) > ? (k ? 1,2) = r(n, 2). 

Under (g'), since b(n + 1, 1) > i(k + 1,2) > r(n, 1), it follows from cases (b), 
(b'), (c) and (c') that b(n + 1, 2) > F (k ? 1,2) = r (n, 2). 

Finally, under (h), we again see that b(n + 1, 1) > r(n, 1) > i(k + 1,2). Again 
from cases (b), (b'), (c) and (c') it follows that b(n + 1, 2) > i (k + 1, 2) = r(n, 2). 

This concludes the proof of the lemma. D 
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LEMMA 19. At the start of a red bubble at the second stage, there is always 
exactly one more r(., 2) than there are b(., 2)'s. Similarly, at the start of a blue 
bubble at the second stage, there is always exactly one more b(., 2) than there 
are r(., 2)'s. 

PROOF. For concreteness, consider r(1, 2). By the order-preservation estab- 
lished in Lemma 18, it suffices to show that r(1, 2) = r(k, 2) = b(k + 1, 2) = 
.. = r(k + m, 2) for some k and m > 0. 

Consider e(1,2). If max{p:b(p, 1) < e(1,2)} > max{q:r(q, 1) < e(1,2)}, 
then we claim that there exists an r(j, 1) E [e(1, 2) + 1, r(l, 2)]. Suppose not. This 
means da(n, 1) < 0 for all n E [e(1,2) + 1, r(1, 2)]. By Lemma 4, dw(e(1, 2) + 
1, 1) > 0 and from the fact that da(n, 1) <0 for all n E [e(1, 2) + 1, r(1, 2)], we 
get from recursively using Lemma 6 that da(r(1, 2), 2) < 0. This contradiction 
establishes the claim. 

Let r(J, 1) = min{r(j, 1) E [(1l, 2) + 1, r(l, 2)]}. By our procedure, r(J, 2) = 
r(l, 2) and b(J, 1) = b(1, 2). By the order-preservation established in Lemma 18 
this identifies r(J, 1) as the smallest bubble start point on the input side that gets 
mapped to r(1, 2). 

[We shall find it useful later to note that dw(r(J, 1), 1) > 0. This is because 
dw(e(1, 2) + 1, 1) > 0, by Lemma 4. Since da(n, 1) < 0 for n e [e(1,2) + 
1, r(J, 1) - 1], by a recursive use of Lemma 6, we get that dw(r(J, 1), 1) > 0).] 

On the other hand, suppose that max{p: b(p, 1) < e(1, 2)} < max{q: r(q, 1) < 
e(l, 2)}. Let r(Q, 1) = max{r(q, 1) < e(l, 2)}. We claim that r(Q, 1) E [f(0, 2) + 
1, e(1, 2)]. Suppose not. Then, by Lemma 4 dw(f(O, 2) + 1, 1) < 0. And since 
da(n, 1) > 0 for all n E [f(0,2) + 1, (l, 2)] (because b(Q, 1) < r(Q, 1) < 

f(0, 2) + 1 and b(Q + 1, 1) > e(1,2)) it follows recursively from Lemma 6 
that da(n,2) > 0 for all n E [f(0, 2) + 1, (1, 2)]. This contradicts b(1,2) E 
[f(0, 2) + 1, (1,2)]. 

By our procedure [cases (f) and (f)], r(Q, 2) = r(l, 2). And from the procedure 
for b(Q, 1), we get that b(Q, 2) < r(1,2). This also identifies r(Q, 1) as the 
smallest bubble start point on the input side that gets mapped to r(l, 2). 

[We again note that dw(r(Q, 1), 1) > 0. Suppose not. Then, since da(n, 1) > 0 
for all n E [r(Q, 1), e(1, 2)], a repeated use of Lemma 6 implies that da(n, 2) > 0 
for all such n. This contradicts da(e(l, 2), 2) < 0.] 

Thus, in both cases, we see that there exists a k such that r(k, 2) = r(1, 2) > 
b(k, 2). 

Now, we shall identify r(k + m, 2). This is easy to see from our procedure: 
k + m = max{l: r(l, 1) > r(k, 1) and r(l, 1) < f(1, 2)}. Note that it follows from 
our procedure that b(k + m + 1, 2) > r(l, 2). 

This concludes the proof of the lemma. D 

Note from the above proof that r(k, 1) < r(1, 2). We also claim that dw(r(k, 1), 
1)> 0. 
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COROLLARY 1. For r(k, 2) as defined in the proof of Lemma 19, r(k, 1) < 
r(l, 2) and dw(r(k, 1), 1) > 0. 

Both statements have been established during the proof of Lemma 19. 

REMARK. While Lemma 18 demonstrates that our procedure for determining 
r(n, 2) and b(n, 2) preserves order, Lemma 19 is the more important. It records 
precisely the identity of the bubbles in the input process that contribute to the 
volume of a bubble at the output. That is, consider r(1, 2) = r(k, 2) = - = 
r(k +m, 2). This implies (as in case y *) that the only possible shades in the volume 
R (, 2) are the red shades k to k + m. It also implies that all the intermediate blue 
shades have been completely cancelled. This influences the following definition of 
bubble volumes at the output stage. 

Determining B(1, 2). Consider b(l, 2). If b(l, 2) = r(n, 2) for some n, then set 
B(1, 2) = 0. Else, b(l, 2) = b(n, 2) for some n. Suppose b(n, 2) = b(k, 2) = = 
b(l,2) = = b(k + m, 2). Then set 

B(n, 2) 
(1,2) B(i, 1) 

As in Possibility y*, this credits each of the blue bubbles proportionately for 
vanquishing the intermediate red bubbles. 

Determining R(1, 2). Similarly as above. 

LEMMA 20. For every n, R(n, 2) < R(n, 1) and B(n, 2) < B(n, 1). 

PROOF. We establish R(1,2) < R(1, 1). There is nothing to prove if 
R(1, 2) = 0. Else, there is a p such that r(p, 2) = r(k, 2) = . = r(l,2) = = 
r(k + m, 2) for some k and m. And 

R(p,2) 
R(1,2) - R(1, 1) R( p, 2) 

km^ R(i, 1) 

Therefore, it suffices to prove that 

k+m 

(18) R(p, 2) < E R(i, 1). 
i=k 

First note that r(k, 1) < r?(p, 2) and from Corollary 1 dW(r(k, 1), 1) > 0. Also 
note that dw(f(p, 2) + 1, 1) < 0 and dw(e(p, 2) + 1, 1) > 0, using Lemma 4. We 
consider two cases. 
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CASE 1 [r(k, 1) > e(p, 2) + 1]. Then (14) gives 

f(p,2) 

dw(f(p, 2)+ 1,1)= da(n, 2)-da(n, 1) + d(r(k, 1), ). 
i=r(k, 1) 

f(p,2) d (n, 2) <Ef(p,2) From this we get that E -I =r(k, 1 ) E(n =r(k,) da(n, 1), since dw(f(p, 2) + 

1,1) < 0 and d(r(k, 1), 1) > 0. But iP(k,2) da(n2) = R(p,2) and 

fir(kl) da(n, 1) < l 
+ R(i 1), since r(k m + 1 1) > f(p, 2). 

CASE 2 [r(k, 1) < e(p, 2) + 1]. From (14) we get 

f(p,2) 
dw(f(p, 2) + 1, 1) = da (n, 2) - da(n, 1) + dw (e(p, 2) + 1, 1). 

i=e(p,2)+1 

Again this gives 

f(p,2) f(p,2) 

R(p, 2) = da(n, 2) < da (n, 1) 
i=e(p,2)+l i=e(p,2)+1 

f(p,2) k+m 

< [da(n, 1)+ < E R(i, 1). 
i=r(k,1) i=k D 

4.1.1. Summary of equilibrium evolution. We have just described the evolu- 
tion of bubbles from the first stage to the second and it is easy to see that the same 
description holds at each stage k, k > 1. We summarize the conclusions in the 
following lemma. 

LEMMA 21. The following holdfor each n E Z and k > Z+: 

1. Bubbles do not overtake each other: r(n - l,k) < b(n,k) < r(n,k) < 
b(n + 1, k). 

2. Bubble volumes do not grow: R(n, k + 1) < R(n, k) and B(n, k + 1) < B(n, k). 
Therefore,for each n, limk,, R(n, k) and limk,, B(n, k) exist. 

3. And, d(k + 1) < d(k), where d(k) is defined in Section 2.2. Therefore, 
limk,o d(k) = d exists. 

5. Proof that d(k)-+O. Given that d(k) is nonincreasing, the proof of 
Theorem 1 is complete if d = limk,od(k) = 0. We shall argue this by 
contradiction and hence assume that P(d > a) > 0 for some a > 0. Equally, 
letting ER(n) = limko, R(n, k) and EB(n) = limk,, B(n, k), the assumption 
for contradiction implies that ER(n) and EB(n) are not zero for all n E Z a.s. 
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Thus, there are some red and blue bubbles which never vanish. Call these bubbles 
"everred" and "everblue," respectively. We proceed by following the method 
of [12]. 

Consider the process of the limiting volumes, {(ER(n), EB(n)), n E Z}, of 
everred and everblue bubbles. Since this process is the decreasing limit of red 
and blue volumes {(R(n, k), B(n, k)), n E Z}, we may imagine that within each 
red and blue bubble there lives an everred or an everblue bubble which is 
colored with the same shade of red or blue. Specifically, consider the process 
{(ER(n, 1), EB(n, 1)), n E Z} of everred and everblue volumes present in the 
initial arrival process. We imagine that ER(n, 1) is the volume of the nth everred, 
which is colored with the nth shade of red, and ER(n, 1) = E R(n) < R (n, 1). And 
similarly for EB(n, 1). Note that we allow everred and everblue bubbles to have 
zero volume; when this happens, it is to be understood that the original blue and 
red bubbles will be completely cancelled out eventually. 

For each n, and for I E R (n, 1), define 

R(n, k) 
Xk(l) = da(l, 1) 

R(n, 1)' 
and for I E (n, 1), define 

B(n,k) 
Xk(l) = da (l, 1) B(n k) 

B(n, 1) 

Given that bubbles volumes do not increase, it follows that Xk (1) is a nonincreasing 
(nondecreasing) sequence for I c <R(n, 1) (resp. for 1 c (n, 1)). Let X(l) = 
limk Xk(l). Since R(1, k) = EI(1 1) Xk(l), one thinks of [Xk(l)]+ as the amount 
of red of shade 1 at location / that survives through to the kth stage. Likewise, 
the process X = {X(l), 1 E Z} may be interpreted as the process of everred and 
everblue volumes present in the original arrival processes at location 1: if X(l) > 0, 
then some everred is present at location I and if X(l) < 0 some everblue is present 
at location I in the original arrival processes. 

By the translation-invariant nature of the queueing operation, {Xk (1), 1 E Z} is 
ergodic for each k. Therefore, 

im --[Xk(l)]+ 
n 

-,-[Xk(l)]- lim lim d (k) n - 2n + 1 n--oo 2n + 1 

where d(k) was defined in Section 2.2. Since d(k) is nonincreasing and almost 
surely a constant for each k, d = limk d(k) is almost surely constant. 

As the decreasing limit of stationary processes, X is, a priori, a stationary (but 
not necessarily ergodic) process. Therefore, 

x = lim =_n[X( 
n-oo 2n + 1 
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exists a.s., and must be treated as a random quantity. But 

yn [Xk(n)] + _,n [Xk(/)]+ d = lim d(k) = lim lim =-n lim lim = = 
k k n 2n+ 1 n k 2n+ 1 

where the limit interchange is due to the following. First, observe that 

d(k) > limsup n 
n 2n+ 1 

for every k, due to the monotonicity of [Xk (1)]+. By Fatou's lemma, for each n we 
get 

imin [X1 (l)]+ - [X (1)]+ - [X k(l)]+ liminf < liminf 
k 2n + 1 k 2n + l I-n =-n 

which implies liminfn((E_l=_n[X(l)]+)/(2n + 1)) > limsupkd(k). Therefore 
d = x, making x an almost sure constant. 

Thus, the assumption d(k) -/ 0 leads to the co-existence, with probability 1, of 
everblue and everred bubbles in A1 and I1 of strictly positive volume per arrival 
equal to d. Since the shades of all red and blue bubbles are distinct, the everreds 
and everblues have distinct shades. By Lemma 21, the ordering of the red and 
blue bubbles, and hence of the everred and everblue bubbles, is preserved at each 
stage k. 

Consider the subprocess {X(l)l\X(l)>l>,1 E Z} and its support set E(1)= 
{l: IX(I)I > E}. Call this the "process of chosen everred and everblue segments" 
and observe that it is stationary since {X(1), E Z} is stationary. Now 6(1) 
can be written as the disjoint union of two sets: Gr(1) = {l:X(l) > e} and 
gb(l) = {I:X(l) < -6}, which support chosen everred and everblue segments 
respectively. Given that d > 0, for any e E (0, d) we get that the density of points in 

b (1) and 8r(1) for this choice of E is strictly positive a.s. (but possibly random). 
Fix one such E and observe that the process of chosen segments appears as an 
alternating sequence of everred and everblue segments. Consider the left endpoints 
of a run of chosen everblue segments, and let ?C b (1) C gb (1) be the set of integers 
which support these segments. The process of left chosen everblue segments is 
also stationary (since chosen everblue segments are stationary) and therefore the 
set ?db(l) has a possibly random density which must be strictly positive a.s. [else 
gb (1) cannot have strictly positive density]. 

A crucial consequence of our construction is that any two chosen left everblue 
segments must be shaded with different colors of blue, since they are separated by 
chosen everred segments. Now consider the starting point of the blue bubbles to 
which the chosen left everblue segments belong, and write tb(1) for the integers 
which form these starting points. Note that the set of points in Sb(1) form a 
stationary sequence. Since there is a one-to-one correspondence between points 
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in C 6b(1) and 8b(1), their densities are almost surely equal. In particular, the 
density of -8b(1), denoted by the random variable C, is almost surely strictly 
positive. 

Thus, we have obtained at stage 1 the existence of blue bubbles with the 
following properties: 

(a) their volumes are at least ?; 
(b) between any two of them there is a red bubble with volume at least e; and 
(c) their start points have density C > 0 a.s. 

By definition, for each n the nth everred and everblue bubbles retain their 
volume at every stage k. And by Lemma 21 the original ordering between everreds 
and everblues is preserved throughout. This allows us to use the same argument 
as above at each stage k and obtain, under our assumption that d(k) -- 0, the 
existence of blue bubbles satisfying properties (a), (b) and (c) listed above at every 
stage k. 

Proceeding, choose 8 > 0 such that P(C > 8) > 8. Write C = Cl + Cg, where 
Cl is the density of the start points, 1, of blue bubbles satisfying property (a) above 
with the additional property that there is another blue with volume at least e and 
start point 1' such that l' < I + 2/8 and there is a red bubble with volume at least 
E between them. Let Cg be the density of the start points of the remaining blue 
bubbles satisfying properties (a) and (b). By definition, Cg < 8/2 a.s. Therefore 
Cl > 8/2 whenever C > 8. Choose 8 so that 2/8 is an integer. 

Therefore, our above arguments imply that for any k there exist blue bubbles 
satisfying the following properties: 

(1) their volumes are at least s; 
(2) there is a red bubble with volume at least E contained in the interval [1, 1 + 2/8], 

where I is the start point of the blue bubble; and 
(3) the density of their start points is at least 8/2 with probability at least 8. 

For any k consider the event E: 

{the density of the start points of blue bubbles satisfying 1 and 2 > 8/2}. 

This event is shift-invariant and contained in the jointly ergodic processes (Ak, Ik). 
By property 3, P(E) > 8. Therefore P(E) = 1. We record this in the following 
lemma. 

LEMMA 22. If d > O, then there exist strictly positive E and 8 not depending 
on k such that there exist blue bubbles in (Ak, Ik) satisfying properties 1 and 2 
above. Further, the start points of these blue bubbles have, with probability 1, a 
density at least 8/2. 
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5.1. Unbounded service times. We specialize to service times whose support 
is unbounded and deal with bounded service times in the next section. By the 
independence of Ik from the service process, the i.i.d. nature and unbounded 
support of the service times {S(n, k), n E Z}, we obtain for the nth arrival of the 
process Ik 

(19) P S(i,k)>I(i,k)forallie n,n+l+- Ik)>0 a.s. 

Given that the above conditional probability is strictly positive for each arrival 
of Ik, a small enough choice of y gives the following lemma. 

LEMMA 23. Ifd > 0, then there exist strictly positive E, 8 and y not depending 
on k such that there exist blue bubbles in (Ak, Ik) with the following properties: 

(A) their volumes are at least e; 
(B) there is a red bubble with volume at least 8 contained in the interval 

[1, 1 + 2/3], where I is the start point of the blue bubble; and 
(C) P(S(i,k) > I(i,k)for all i E [1, 1 + 1 +2/]Ik) > y and whose start points 

have density at least 8/3 a.s. 

We shall prove Theorem 1 after stating the following lemma. 

LEMMA 24. Let I = b(n, k) be the start point of a blue bubble whose volume 
B(n, k) > E, and let r(m, k) > b(n, k), m > n, start a red bubble whose volume 
R(m, k) > E. Further suppose that both bubbles are contained in the interval 
[1, + L] (i.e., R(m, k) C [, 1 + L]). If S(i, k) > I(i, k)for all i E [1, + L], then 
either B(n, k + 1) = 0 or R(m, k + 1) = 0. 

PROOF. From the proof of Lemma 18 we know that b(n, k + 1) equals either 
the start of a red bubble or the start of a blue bubble at stage k + 1. First suppose that 
b(n, k + 1) equals the start of a red bubble. Then, by the procedure for determining 
B(n, k + 1), it follows that B(n, k + 1) = 0. 

Next suppose that b(n, k + 1) equals the start of a blue bubble. We claim 
r(m, k + 1) = b(n, k + 1); hence r(m, k + 1) equals the start of a blue bubble which 
implies R (m, k + 1) = 0. To establish the claim, first observe that da (n, k + 1) > 0 
for all n E [1, 1 + L] by (ii) of Lemma 1. Therefore, one of the following must be 
true: (1) b(n, k + 1) < 1 or (2) b(n, k + 1) > I + L. 

Under case (1), since b(n, k + 1) < b(n, k) [i.e., the start point of the blue bubble 
moved left to the start point, say b(p, k + 1), of a blue bubble at stage k + 1] 
we are in Case (a) of the procedure for determining b(n, k + 1). Accordingly, 
b(n, k) E [b(p, k+ 1), e(p, k+ 1)], where e(p, k+ 1) is as defined in the procedure 
for deciding b(n, k + 1). Since da(n, k + 1) > 0 for all n E [1,1 + L], it follows 
from the definition of e(p, k + 1) that e(p, k + 1) > 1 + L and in fact that 
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da(n, k + 1) = 0 for all n E [1, 1 + L]. Now, since R (m, k) C [1, 1 + L], it follows 
that b(m + 1, k) < e(p, k + 1). Therefore, by case (g) for determining r(m, k + 1), 
we get that r(m, k + 1) = b(p, k + 1) = b(n, k + 1). 

Under case (2), let b(n, k + 1) = b(p, k + 1) > 1 + L. Again since R(m, k) c 
[1, + L], it follows that b(m + 1, k) < b(p, k + 1). It follows from Lemma 17 
that b(m + 1, k + 1) < b(p, k + 1). But, by the order-preservation of start points, 
it follows that b(n, k + 1)=r(m, k + )=b(m+ 1, k + 1) =b(p, k + 1). D 

To complete the proof of Theorem 1, consider a blue bubble at stage k satisfying 
properties (A)-(C) of Lemma 23. Lemma 24 shows that there is a reduction in the 
sum of blue and red volumes for every such blue bubble by an amount at least s. 
Since d(k) equals half of the average of the sum of blue and red volumes per 
arrival, we have shown that d(k) -d (k + 1) > y Y8 for every k. This contradiction 
proves Theorem 1 when the service times have unbounded support. 

5.2. Bounded service times. In this section we show how the argument of the 
previous section can be extended to handle the case of bounded service times. 
Observe that the boundedness of service times affects only properties (C) of 
Lemma 23, properties (A) and (B) continue to hold since they do not depend on 
service times. The key observation is that although the lack of unbounded services 
may not guarantee the interaction of blue and red bubbles at a single stage, the 
i.i.d. nature of the services can be used to force the bubbles to interact over several 
stages as shown below. 

Suppose that properties (A) and (B) of Lemma 23 hold. Forcing the cancellation 
of an e amount of blue volume over several stages consists of two parts: 
(i) ensuring that the red bubble stays within the interval [l, 1 + 2/8], and (ii) forcing 
the blue bubble to move to the right of this interval. We shall show how each of 
these parts can be accomplished in turn. 

Since services are nonconstant, there exist 0 < a < b such that P(S(1, 1) < 
a) P(S(l, 1) > b) > 0. Consider the event 

1+1+2/$ 
F= E y I(i,k) < K(b-a). 

i-=l 

Since the average density of points belonging to Ik equals 1 /, given vl (0 < vl < 
I/r), we may choose K large enough that the density of customers 1 in Ik for 
whom F holds is bigger than 1/r - vl. Fix K so that the above is true and define 
the event 

Gk= S(i, k) < min{ (i, k), a} for all i e + ,1 + . 

LEMMA 25. Suppose Gk holds. If dW(L + 1, k)< for some L E [1, 1 + 2/], 
then da(i, k + 1) Ofor alli C [1, L]. 
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REMARK. In words, the above lemma states that under the event Gk if there 
is any movement of red volume to the right at location L in the interval [1, 1 + 2/8] 
(dw(L + 1, k) < 0), there cannot be any blue volume left in [1, L] (da(i, k + 1) > 0 
for all i e [1, L]). That is, if any red volume moves to the right under Gk we 
may infer that the blue bubble of volume at least E has been fully cancelled. The 
event Gk, therefore, ensures that red volume stays in [1, 1 + 2/8] so long as there 
is any blue volume in this interval to the left of (or, ahead of) the red bubble. 

PROOF OF LEMMA 25. If dW(L + 1, k) < 0 then WI(L + 1,k) > WA(L + 
1, k) > 0. But, if W (L + 1, k) > 0 then since I(i, k) > S(i, k) for all i E [ + 1, L], 
it follows inductively from the recursion 

WI (i + 1, k) = [WI (i, k) + S(i, k) - I(i, k)]+ 
that WI (i, k) > 0 for all i E [1 + 1, L]. Or, equally, that I(i, k) - S(i, k) - 
WI (i, k) < 0 for all i E [1, L]. Now, from the equation 

I(i,k + 1)= [I(i,k) - S(i,k) - WI(i,k)]+ + S(i,k + 1) 

we deduce that I(i,k + 1) = S(i + 1,k) for all i e [1, L]. Since it is always 
true that A(i, k + 1) > S(i + 1, k) [see equation (4)], we get that da(i, k + 1) = 
A(i, k + ) - I(i, k + 1) >O for alli e [, L]. 

COROLLARY 2. Let G = n'k+K Gp. If, under G, dW(L + 1, p) < Ofor some 
L E [1, 1 + 2/8] and p E [k, k + K], then da(i, p + 1) > Ofor all i [1, L]. 

The event G ensures that the red bubble does not move out of the interval 
[1, 1 + 2/8] so long as there is blue volume in it during stages k through k + K 
to the left of the red bubble. 

We now consider the second part: ensuring the blue bubble is forced to the right 
and cancels the red volume. Toward this end consider the event 

H = {S(l, m) > b for all m E [k, k + K]}. 

On the event G n H the service time of customer 1 is greater than the service 
times of all the subsequent 1 + 2/8 customers by at least b - a during stages k 
through k + K. Given the first-come-first-served nature of the service discipline, 
this implies customer I will be "slowed down" during stages k through k + K 
allowing customers 1 + 1 through / + I + 2/8 to "catch up." Now the event F 
bounds the separation between customers 1 through / + 1 + 2/8. Therefore, we are 
guaranteed that under F n G n H customers 1 through 1 + 1 + 2/8 will be served in 
one busy cycle at stage k + K. That is, the interdeparture times from stage k + K 
for the I-process will all equal service times: I (i, k + K + 1) = S(i + 1, k + K) 
for all i E [1, 1 + 2/8]. We establish the above formally in the following lemma. 
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LEMMA 26. Assume the event F n G n H holds. Then there exists a K' < K 
such that da(i, k + K' + 1) > Ofor all i E [1, 1 + 2/3]. 

PROOF. Recursively from (5) we obtain 
1+2/8 

I(i, k + 1)- W (l + 1 +2/3, k) 
i=l 

1+2/8 
= L I(i,k)-S(l,k) + S(l + +2/, k)-W(1, k). 

i=l 

Setting Cj = E1/ i= I (i, j), the above becomes 

Ck+l = Ck - S(l, k) + S(1 + 1 + 2/S, k) - W(l, k) + W (1 + 1 + 2/8, k). 

Suppose that WI (1 + 1 + 2/8, j) = 0 for all j E [k, k + K]. Then, applying the 
previous equation recursively, we get that Ck+K < Ck - K(b - a). This implies 
Ck+K < 0 on the event F n H, which is a contradiction. Therefore, it must be that 
there is a K' < K such that WI (1 + 1 + 2/, K') > 0. 

Now from Wl(n + 1,j) = [W'(n,j) + S(n, j) - I(n,j)+ we get that 
WI (i, K') > 0 for all i E [1 + 1, 1 + 1 + 2/8], since S(i, K') < I (i, K') for all such i 
(under the event G). This implies via (3) that I (i, k + K' + 1) = S(i + 1, k + K') for 
all i [1, 1 + 2/8]. Since A(n, m + 1) > S(n + 1, m) for every n and m [from (4)], 
it follows that da(i, k + K' + 1) > 0 for all i E [1,1 + 2/8]. 

Therefore, under the event F n G n H, we have ensured that during stages k 
through k + K' (i) no red volume leaves [1, 1 + 2/8] (event G), and (ii) and only red 
volume remains in the interval [1, 1 + 2/5] at stage k + K' (under event F n G n H). 
This implies one of the following must have occurred by stage k + K': (i) the 
blue bubble of volume E wiped out the red bubble and moved outside the interval, 
(ii) the blue bubble moved into and got cancelled by the red bubble or (iii) some 
red volume entered the interval from the left and cancelled the blue bubble. In 
all cases it follows that either a red or a blue volume of E was cancelled between 
stages k and k + K'. (We omit a tedious argument, similar to the one in the proof of 
Lemma 24, that identifies the start points of the red and blue bubbles over multiple 
stages and infers the above volume loss.) 

Continuing, since Ik is a fixed point, it must satisfy all properties of any 
departure process. In particular, departure processes stochastically dominate the 
service process: D(n,k) > S(n + 1, k - 1) for all n and k. Hence Ik must 
stochastically dominate the services. From this and the independence of services 
from arrivals it follows that for each customer 1 the conditional probability of the 
event G given the process Ik is strictly positive. Therefore, a small enough choice 
of V2 ensures that the density of customers 1 E Ik for which P(F n G n H IIk) > v2 
is at least 1/r - v2. 
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We record the above development in the following lemma, which is analogous 
to Lemma 23. 

LEMMA 27. Ifd > O, there exist strictly positive e, 8, v and K not depending 
on k such that there exist blue bubbles in (Ak, Ik) with the following properties: 
(A) their volumes are at least s; 
(B) there is a red bubble with volume at least E contained in the interval 

[1, 1 + 2/8], where I is the startpoint of the blue bubble; and 
(C) P(F n G n HIIk) > v and whose startpoints have density at least 8/3 a.s. 

To conclude, we have shown under the hypotheses of Lemma 27 that d(k) - 
d(k + K) > ?1 v for every k. This proves Theorem 1 for bounded services 
as well. 

5.3. Corollaries. 

DEFINITION 1. The p distance between two stationary and ergodic sequences 
X = {Xn, n E Z} and Y = {Yn, n e Z} of mean r is given by 

p(X, Y) = inf Ey IX1 - Y 1, y 
where y is a distribution on Me x MT-the space of jointly stationary and ergodic 
sequences (X, Y), with marginals X1 and Y1 distributed as X1 and Y1. (See, e.g., 
[5] or [8], Definition 2.3, for further details of the p metric.) 

Chang [5] has shown that the ./GI/1 queue is a contraction in the p distance. 
That is, if A1 and I1 are two ergodic inputs to a ./GI/I queue with corresponding 
outputs equal to A2 and I2, then p(A2, 12) < p(A1, I1). He also showed that this 
inequality is strict when the service times have unbounded support. 

For each k let gk be the joint distribution of the processes (Ak, Ik). Choosing 
A1 and I1 to be independent as in the previous sections, i/1 equals the product 
measure-clearly a member of Me x MJ. The translation invariant nature of 
the queueing operation preserves joint ergodicity, implying gk E MT x Me for 
every k. 

COROLLARY 3. p(Ak, Ik) O- 0 as k -+ oo. 

PROOF. Now 2d(k) = Ek IA(1, k) - I(1,k). Therefore 

2p(Ak, Ik) inf Ey JA(1, k) - (1, k)J 

< E\klA(l,k) - I(1, k) 

=2d(k) 
k 0. 

This proves the corollary. O 
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COROLLARY 4. If a stationary and ergodicfixed point exists at mean T, then 
it is unique. 

COROLLARY 5. Suppose I1 and 12 are two stationary and ergodic fixed 
points for a */GI/1 queue at means rl and T2, respectively. If Tl < T2, then 12 
stochastically dominates II; that is, there exists a joint distribution y of I1 and 12 
such that under y, I (n) < I2(n) for every n a.s. 

PROOF. Let F1 = {F(n, 1),n E Z} be distributed as 12 and define A1 = 
{A(n, 1),n E Z}, where A(n, 1) = (rt/r2)F(n, 1), to be another ergodic arrival 
process of mean tr. Pass F1 and A1 through a tandem of ./GI/I queues giving the 
nth customers of both processes the same service time, S(n, k), at each stage k. 
Since A(n, 1) < F(n, 1) for all n, we get [from (3) and (4)] that A(n, k) < F(n, k) 
for all n and k. Let Yk be the joint distribution of (Ak, Fk). By Theorem 1, (Ak, Fk) 
converges to (A?, F??) = (1, 12) in distribution. Let y,o be the joint distribution 
of (A?, F??) and note that 12 stochastically dominates I1 under y,o. To finish, set 
Y = yoo. 

6. Conclusions and related work. Assuming the existence of ergodic fixed 
points for a first-come-first-served ./GII/ queue, we have used coupling argu- 
ments to show that they are attractors. As a consequence we have also seen that an 
ergodic fixed point at mean r > 1 is unique. We note that while the arguments do 
not place any restrictions on the service time distribution (other than that it have a 
finite mean and be nonconstant), they rely crucially on the first-come-first-served 
nature of the service discipline. 

Earlier work on the uniqueness and attractiveness of fixed points for various 
queues can be found in [1, 5], Section 9.4 of [6], [12-15]. While this list of papers 
is not exhaustive, combined with the references contained in them, they give a 
fuller picture of earlier work. The references [5] and [12] are particularly relevant 
for the present paper. 

The existence of ergodic fixed points at some rates 1/r < 1 has been 
established by Mairesse and Prabhakar [10] assuming that the service times satisfy 
f P(S(O, O) > u)1/2 du < oo. We refer the reader to [10] for precise details and for 
a statement of further work. The result of [10] relies on the work of Baccelli, 
Borovkov and Mairesse [2], Glynn and Whitt [7] and Martin [11] concerning the 
limiting behavior of waiting times in a tandem of ./GI/1 queues with arbitrary 
input processes. 
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reading the paper and helping clarify the presentation. 
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