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We consider a discrete-time queue with general service distribution and 

characterize a class of arrival processes that possess a large deviation rate 
function that remains unchanged in passing through the queue. This invariant 
rate function corresponds to a kind of exponential tilting of the service 
distribution. We establish a large deviations analogue of quasireversibility for 
this class of arrival processes. Finally, we prove the existence of stationary 
point processes that have a probability law that is preserved by the queueing 
operator and conjecture that they have large deviation rate functions which 
belong to the class of invariant rate functions described above. 

1. Introduction. Burke's theorem says that if the arrival process to a ./M/1 
queue is Poisson with rate less than the service rate, then the departure process in 
equilibrium is also Poisson with the same rate. In other words, a Poisson process 
of rate a is a fixed point of the ./M/1 queue with service rate 1, for every a < 1. 
It has been shown [16] that a similar result holds for single-server queues with 
a general service time distribution: nontrivial stationary ergodic fixed points do 
exist. However, little is known about the properties of fixed points. 

In this paper we consider the fixed point question at the large deviations scaling. 
Assuming the service process satisfies a sample path large deviation principle, we 
identify a class of arrival processes that have sample path large deviations behavior 
that is preserved by the queue and we establish a large deviations analogue of 
quasireversibility for this class of arrival processes. We conjecture that fixed points 
belong to this class. The invariant rate function corresponding to a given arrival 
rate is given by a kind of exponential tilting of the service distribution. This 
suggests that, in some sense, the fixed point is as similar in relative entropy to 
the service process as it can be, subject to its rate constraint. To make sense of 
this interpretation, however, raises more questions and seems to be an interesting 
topic for future research. For example, is the fixed point a Gibbs measure? We 
also show that the invariant rate function corresponding to each mean arrival rate 
is unique in the class of rate functions satisfying the large deviations analogue of 
quasireversibility. 

For completeness, we also present some results on the existence and attractive- 
ness of fixed points for discrete-time queues. We show that the continuous-time 
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results of Mairesse and Prabhakar [16] and Mountford and Prabhakar [17] can be 
reproduced in discrete time with minor modifications. 

The results in this paper are derived in the context of a discrete-time queueing 
model which we now describe. The queue has arrival process {An, n e Z, where 
An denotes the amount of work arriving in the nth time slot. The service process is 
denoted by Sn},, where Sn denotes the maximum amount of work that can be 
completed in the nth time slot. The arrival and service processes are assumed 
to be stationary and ergodic sequences of positive real random variables. The 
workload process, {Wn}, is described by Lindley's recursion: Wn+l = max{Wn + 
An - Sn, 0}. The amount of work departing in time slot n is given by 
(1) Dn = An + Wn - Wn+l = min{Wn + An, Sn}. 
If An and Sn are integer-valued for all n, then Wn can be thought of as the number 
of customers in the queue at time n. 

In the next section, we present the relevant large deviation results from [19] 
and [10], and identify a class of rate functions that are preserved by the queueing 
operator. We establish a large deviations (LD) analogue of quasireversibility for 
arrival proceses having rate functions in this class, and show that any invariant rate 
function that satisfies LD quasireversibility must belong to this class. In Sections 3 
and 4, we present some results on the existence and attractiveness of fixed points. 

2. Invariant rate functions for the single-server queue. Let X be a 
Hausdorff topological space with Borel a-algebra B and let Xn be a sequence 
of random variables taking values in X. A rate function is a nonnegative lower 
semicontinuous function on X. We say that the sequence Xn satisfies the large 
deviation principle (LDP) with rate function I, if for all B E ?, 

1 1 - inf I (x) < liminf - log P(Xn E B) < limsup- log P(Xn E B) <- inf I (x). 
xeBO n n xEB 

Here B? and B denote the interior and closure of B, respectively. A large deviation 
rate function is good if it has compact level sets. 

Let Sn denote the polygonal approximation to the scaled service process, 
defined for t > 0 by 

/- (\)LntJ + 1 Lnt1j|\ 
Sn (t)= Sn(t) + (nt-[Lntj) S - ( -Sn n^ )), 

where 
1 Lntj 

Sn(t)=- Sk. n k=l 

Given an arrival process An, we define An(t) analogously. Let C(IR+) denote 
the space of continuous functions on the positive real line and let A(e(IR+) 
denote the subset of absolutely continuous functions. We now record some 
hypotheses. 
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ASSUMPTIONS. 

1. The sequences {An and {Sn} are stationary and ergodic, and independent of 
each other. The limiting cumulant generating functions 

1 
AA() = lim -log E exp0(A1 ...+ A), n->oo /' 

1 
As(0) = lim -log E exp(Si + + Sn), n-> oo 

exist as extended real numbers for all 0 E R, are differentiable at the origin and 
lower semicontinuous. 

2. The sequences An and Sn both satisfy the LDP in C(IR+) equipped with the 
topology of uniform convergence on compacts, with respective rate functions 
IA and Is given by 

JA() -=- IA(q(t))dt, if0 E ̂Ce(R+), 
+o0, otherwise, 

where 

IA(X) = sup{0x - AA(0)} 
0eR 

is the convex dual of AA; is and Is are described similarly in terms of As. 
3. The stability condition A (0) < A'(0) holds. 
4. IA(X) < IS(X) for all x < AA(0). 

It has been shown by a number of authors under different levels of generality 
(see, e.g., [4, 7, 8, 12]) that the tail of the workload distribution in equilibrium 
satisfies 

(2) lim -log P(W > b)=-8, b-+oo b 

where 

(3) 8 = inf TIw(1/T) T>O 

and, for w > 0, 

(4) Iw(w) = inf[IA (a) + Is(a - w)]. a>w 

For the workload to build up at rate w over a long period of time, arrivals over 
this period must occur at some rate a exceeding the service rate by w; the most 
likely way for this to happen is found by minimizing the expression in (4) over all 
possible choices of a. Large workloads occur by the queue building up at rate 1 / T 
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over a period of (scaled) length T, chosen optimally according to (3). The decay 
rate S has the alternative characterization 

(5) 8 = sup{0 : AA(O) + As(-0) < 0}. 

Let Dn(t) denote the scaled departure process, defined analogously to An(t) 
and Sn(t), and let Wn(t) = W([ntj)/n denote the scaled workload at time Lnt . 

THEOREM 1 ([19], Theorem 3.3). Under Assumptions 1-3, the sample mean 
Dn (1) = (D1 + ) + Dn)/n of the equilibrium departure process satisfies an LDP 
in IR with rate function ID given by 

ID(z) = inf +I Iq + ,l IA + F2 IA + IS(C2) 
(6) .- 2 

+ rTIA( 
- +(1- - - P-2)s( Z 

-- 
Z2 -( 1 -- f-2 

subject to the constraints that 

q, z1, Z2, P1, P2, c2, , > , + /2 + T 1, 
(7) 

f2C2 > Z2, Z-Z1 -Z2>0. 

The interpretation is as follows. Let q, zl, , z1, 2, c2, t achieve the infimum 
above subject to the constraints. The most likely path resulting in departures at 
rate z in equilibrium is the following. The system starts with an initial queue 
size q at time 0. Then, in the first phase of length PB1, arrivals occur at rate 
(zl -q)/1l and services at rate zl//l, so that at the end of this period the 
queue is empty and zl customers have departed. In the next phase, of length P2, 
customers arrive at rate Z2/,82, which is no more than the available service rate c2 
during this period; hence the queue remains empty and an additional z2 customers 
depart. The available service rate during the final phase of length 1 - f1 - /2 is 
(z - Z1 - Z2)/(l - 1 - P2). The arrival rate is (z - zl - z2)/r during the initial 
r units of this phase, and is the mean arrival rate for the remainder, of length 
1 - /1 - /2 - r. Clearly, only z - zl - Z2 customers can depart during this final 
phase, bringing the total departures to z. The reason that the optimal path can have 
at most three phases has to do with the convexity of IA and Is. This implies that 
the arrival and service rates must be constant from the time when the queue is 
first empty until the time that it is last empty during the scaled time interval [0, 1]. 
Likewise the arrival and service rates must be constant from the start until the time 
the queue is first empty, and from the time the queue is last empty until the end of 
the time period. This interpretation helps us to write down the joint rate function 
for the sample mean of the scaled departure process during [0, 1] and the scaled 
workload in queue at time 1. We also note that arrival and service rates must be 
constant through the first two phases; if not, "straightening" by replacing the paths 
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of the arrival and service processes over the first two phases with straight lines 
at the respective mean rates leaves the total departures unchanged but reduces the 
objective function in (6). Likewise, the arrival rate must be constant throughout the 
final phase. Thus, we can modify Theorem 1 as follows. 

Under Assumptions 1-3, the sample mean Dn (1) of the equilibrium departure 
process over the period (0, n) and the scaled workload Wn(1) at time n jointly 
satisfy a LDP in JR2 with rate function ID, W given by 

(8) ID,w(Z, )=min inf fl(q), inf f2(x) 
qeCI xeC2 

wherex = (q,zl,z2, 2), 

fi(q) = q + IA(Z + w - q) + IS(z), 

C1 = {q :O q < z + w}, 

(9) f2(x) = 8q + IA q )+Is 
Z2 

(9) A/, 

+ (1-,) IA Z1 + IS -l 

C2 = Ix :0 < q < zl < z, z2 > ZI, E [0, 1]}. 
We omit a detailed derivation of this result for brevity. The intuition behind it is 
that the most likely path leading to Dn (1) = z and Wn (1) = w can only be of one 
of the following two types. In the first case, we have an initial workload nq at 
time 0, arrivals at constant rate z + w - q and constant service capacity z over the 
entire period [0, n]. The queue never empties on [0, n] and no service capacity is 
wasted. In the second scenario, the optimal path has two distinct phases. The first 
phase begins at time 0 with workload nq. The arrival rate is (zl - q)/f and the 
service capacity is Z2/,8 during this phase, which runs until time fn. Moreover, 
zl < Z2, and so the queue is empty at the end of the first phase. During the second 
phase, which runs over [fn, n], the arrival rate is (z + w - zl)/(l - ,), the service 
rate is (z - zl)/(1 - ,) and the queue is never empty. The optimization problem in 
(8) and (9) corresponds to determining the most likely path within these scenarios. 

It was shown in [10] that, if Assumption 4 is violated, then the rate function 
governing the sample path LDP for the scaled departure process in equilibrium, 
Dn (defined analogously to An and Sn), is not convex; in particular, there 
is no convex function I(.) such that Do() = f I(p(t))dt for q E AC(R+). 
Assumption 4 guarantees that ID is convex and that, conditional on Dn(l) = d, 
P(sutE[O,1] IDn(t) - dtl > e) -- 0 as n -- ox for every e > 0. This "linear 
geodesic property" is still not sufficient to guarantee that the rate function lD o() = 
f I(Q(t))dt for all q E AC(IR+). The main result of this section is that, given 
a service process which satisfies Assumptions 1 and 2, we can find an arrival 
process such that Assumptions 1-4 are satisfied and such that the departure process 
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satisfies the sample path LDP with rate function ID = IA. For this arrival process, 
we also show that a large deviations version of quasireversibility holds: the joint 
rate function for D ([0, 1]), Wn(1) is the sum of the individual rate functions for 
Dn ([0, 1]) and Wn (1), respectively. We state the result following some definitions. 

Let f : R -- R U oo be a convex function. The effective domain of f, which we 
denote by dom f, is the set {x E 1R: f(x) < oo}. For x E dom f, the subdifferential 
of f at x, denoted subdiff f(x), is the set 

{B IR: f(y) > f(x) + P(y - x) Vy e R}. 
It is convenient to work in a topology which is finer than the topology of uniform 
convergence on compacts. Set 

/= \) 6e e(1R+): lim () exists 
I(= t *0t--oo I+t 

t 

and equip Y with the norm 

q5(t) 
III?u= sup 

t l+t 
In Theorem 2 below, we consider a service process of unit rate; for each 

a E (0, 1) which is in the interior of the effective domain of the rate function for 
the service process, we construct an arrival process of rate a whose large deviation 
rate function is preserved by the queueing operator. 

Suppose a E (0, 1) is not in the effective domain of the rate function for the 
service process. Then 

a < a* := inf(dom Is) 
and the service capacity in every time slot is bounded below by a*. In this case, 
any arrival process of rate a for which the arrivals in a time slot are bounded 
deterministically by a* will be a fixed point of the queue; in particular, its large 
deviation rate function will not change in passing through the queue. 

THEOREM 2. Suppose the service process {Sn, n E Z} satisfies Assumptions 
1 and 2, and assume without loss of generality that the mean service rate E[S1] = 
A's(0) = 1. Assume that Is is strictly convex and let a e (0, 1) be in the interior of 
the effective domain of Is. Define 

(10) Xa = inf{subdiff Is(a)}. 

If the arrival process {An, n E Z} satisfies Assumptions 1 and 2 and 

(11) IA(X) = IS(X) - Is(a) - Xa(x - a), 

then Assumptions 3 and 4 hold as well, and the departure process Dn satisfies the 
LDP in y with good convex rate function ID I A. In addition, for any t > 0, 
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(Dn([O, t]), Wn(t)) jointly satisfy the LDP in C([0, t]) x 1R with good convex rate 
function 

jJIA@P(s ( ^))ds ? iw, ?fE A?([0,t]), (12) ID,w(?, w)= IA((s))ds+w, 
if 0 c([,t) 

+oo0, otherwise. 

Note that XA. exists and is finite by the convexity of Is and the assumption 
that a is in the interior of domIs. Since As is differentiable at the origin, with 
As(0) = E[S1] = 1 by assumption, we have Is(1) = 0 and Is(x) > 0 for all x :A 1 
(see [6]). Consequently, by the convexity and nonnegativity of Is, Is is decreasing 
on (-oo, 1) and increasing on (1, oo). Since a E (0, 1), it follows that Xa. < 0. 
Finally, it is not hard to verify from the definition that the subdifferential is a closed 
set. So, by (10), Xa E subdiff Is(a). 

We now verify that IA defined by (11) is a rate function and that it is convex. 
We have, by definition of the subdifferential and the fact that .a eE subdiff Is(a), 
that 

Is(x) > Is(a) + -a (x- a) Vx E R. 

Hence, by (11), IA(X) > 0 for all x E IR. It is also clear from (11) that IA inherits 
lower semicontinuity and strict convexity from Is, and that IA (a) = 0. Therefore, 
IA is a strictly convex rate function. 

Next, we verify that Assumptions 1 and 2 imply Assumptions 3 and 4 for IA 
defined by (11). Since IA (a) = 0 and IA is strictly convex and nonnegative, IA has 
a unique zero at a. By the strong law of large numbers, An(t) - tE[A1] as 
n -- oo, and it follows from Assumption 2 that E[A1] = a. Since E[S1] = 1 and 
a < 1 by assumption, the stability condition in Assumption 3 holds. Recalling that 
X.a < 0, we have ), (x - a) > 0 for all x < a = E[A1] = A'/(0). Since Is(a) > 0, 
it follows from (11) that IA(X) < IS(X) for all x < AA(0), that is, Assumption 4 is 
satisfied. 

Suppose Sn is an i.i.d. sequence and S1 has probability law it. We say that a 
probability law v is an exponential tilting of ,u if v is absolutely continuous with 
respect to ,u and there is a X E R such that As(.) is finite, and 

dv d (x) = exp(Xx - As(X)) 

for all x E R1. If X1 is a random variable with law v, then its cumulant generating 
function is given by 

Ax(0) = log ex dv(x) 

= log exp(-As()) e(+)x di(x) = As(O + X) - As(X). 
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Taking convex duals of the above, we get 

Ix(x) = sup[Ox - Ax ()] 

= sup[0x - As(O + X)] + As(X) = Is(x) - x + As(X). 
0 

Now if X is in the interior of the domain of As, define ,6 to be A's(X), which exists 
and is finite. It is easy to verify that Is(fl) = XB - As(X). Thus, we have from 
above that 

Ix(x) = Is(x) - Is() - - ). 

Comparing this with (11), we see that the invariant rate function corresponds to 
an exponential tilting of the service distribution when the service process is an 
i.i.d. sequence. Note that even if the service process is i.i.d., the fixed point of the 
queue, whose existence is established in Section 3, may not be an i.i.d. sequence. 
Nevertheless, our conjecture is that its large deviation rate function will correspond 
to an exponential tilting of the service distribution, as above. 

A continuous-time queue is called quasireversible if, in stationarity, the state of 
the queue at any time t, the departure process before time t and the arrival process 
after time t are mutually independent (the state is the same as the queue length 
if service times are exponential, but is more complex in general). It then follows 
that the arrival and departure processes are Poisson. The joint distribution in a 
network of quasireversible queues is product-form, which makes them analytically 
tractable and has contributed to the popularity of quasireversible queueing models 
in performance analysis. A more detailed discussion of quasireversibility can be 
found in [14, 18, 23]. 

In Theorem 2, we show that a large deviations analogue of this property, 
which we shall refer to as LD quasireversibility, holds for a general discrete 
time queue, the input of which has the invariant rate function given by (11). 
Specifically, the past of the departure process is independent of the current 
workload on a large deviations scale, in the sense that the joint rate function for 
the past departures and the current workload is the sum of their individual rate 
functions. We have from the definition of IA and Is that the joint rate function for 
(An ((-ox, t]), Sn ((-oo, t])), An (t, oo), decomposes into a sum of their individual 
rate functions. Since the workload at t and the departures up to time t depend only 
on the arrivals and services up to time t, we see that in fact the past departures, 
the current workload and the future arrivals are mutually independent on the large 
deviation scale, in the sense described above. 

The proof of Theorem 2 proceeds through a sequence of lemmas. 

LEMMA 1. Let {An} and {Sn, satisfy the assumptions of Theorem 2, with 
IA given by (10) and (11). Then, for S defined by (5), 8 = -,a. 
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PROOF. Since IA and AA are convex duals, as are Is and As, we obtain 
using (11) that 

AA(O) = sup [x - IA(X)] = sup[(0 + Xa)x - Is(x) + Is(a) - aa] 
(13) XER XER 

= As(O + 3a) + Is(a) - a, 

and so 

(14) AA(-a) + AS(Xa) = AS(O) + Is(a) - Xc,a + AS(Xa). 

We have from (10) and the definition of subdifferentials that Is(x) > Is(a) + 
X, (x - a) for all x E R. Hence, 

(15) As(X) = sup [Xax - Is(x)] = Xa - Is(a). 
xeR 

Combining this with the fact that As(O) = 0, we get from (14) that AA(--a,) + 
AS(Xa) = 0, so that, by (5), 8 > -A. 

We have shown that f(0) := AA(0) + As(-0) = 0 at 0 = -.a > 0. Now f is 
convex and f(O) = 0 since AA(0) = As(O) = 0. Moreover, f'(0) = AA(0) - 
AS(0) < 0 by Assumption 3, so f is not identically 0 on [0, -Xc]. Hence, 0 and 
-.a are the only O's of f and f(r/) > 0 for all rl > -a,. It follows from (5) that 
3 < -Xa. Combining this with the reverse inequality obtained earlier completes 
the proof of the lemma. O 

LEMMA 2. Suppose {An} and {Sn} satisfy the assumptions of Theorem 2, with 
IA given by (10) and (11). Let z, w > 0 be given. Then 

fi(q)>IA (Z)+ w and f2(x)> IA(Z)+ 8w 

for any q E C1 and any x E C2. 

PROOF. For any q E [0, z + w], we have by (11) and Lemma 1 that 

(16) fl (q) = Sq + IA(Z + w - q) + Is(z) 
(16) 

= Sw + Is(z + w - q) + IA(Z) > SW + IA(Z), 
where the inequality is seen to follow from the nonnegativity of Is(). 

Next, let x = (q, zi, Z2, P) achieve the infimum of f2 over C2. The infimum 
is attained at some x E C2 because f2 is convex and lower semicontinuous with 
compact level sets (it inherits these properties from the rate functions IA and Is), 
and C2 is closed. We shall show that f2(x) > I (z) + 8w. 

We see from the definition of C2 that z2 > zl. If z2 = zl, we obtain from the 
definition of f2 in (9) and the convexity of IA and Is that 

f2(x) > q + IA(Z + w - q) + IS(z), 
and so, by (16), f2(x) > IA(Z) + 8w. 
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On the other hand, if Z2 > z 1, then the constraint on Z2 in the definition of C2 is 
slack, so f2 must attain an unconstrained minimum with respect to Z2, that is, z2/fl 
is a local minimizer of Is (). Since Is(x) is convex and achieves its minimum value 
of zero uniquely at x = 1, we have z2/P = 1. We also note that Is is nonincreasing 
on (-o, 1] and so 

Is(z -q) > ISZIs) 

since z < z2 and q > 0. Hence, by (11) and Lemma 1, 

(17) IA Zl -q -IA zI is zl -q iS- - >- X - -7)) z4(Zl-) ( q q 
4 > -S 4 

We obtain from (9), (17) and the equality Is(z2/f5) = Is(1) = 0 that 

(18) f2(x) > PIA -(1 ) IA(Z 
- w - 

IS 

Using (11) and Lemma 1 again, we see that 

IA 
1-- +IlS-^ 1 + _ IA (Z ) i ) + IS -- 

Z 
) + A ( - z 

) + 

Substituting this in (18) and noting that 

PIA(Z1//) + (1 - 8)IA((Z - Z1)/(1 - ,8)) > IA(Z) 

by the convexity of IA, we get 

f2(x) IA(Z)+ Sw. 

Since x minimizes f2 over C2 by assumption, the above inequality also holds for 
any y e C2. This completes the proof of the lemma. O 

LEMMA 3. Let w, z > 0 be given. If z + w > 1, then the infimum in (8) 
is achieved by fi at q* = z + w - 1, whereas if z + w < 1, then the infimum 
in (8) is achieved by f2 at 

X*=(q ,z1, Z2, ) , ,(O w Z(1 W-Z) 1-W 1-W 
- 

I 1-z 1-z 1 -z 
In either case, the minimum value, ID,W(z, w), is IA(Z) + Sw. 

PROOF. We have from (16) that 

since Is(z + w - q*) = Is(1) = 0. 
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Using the definition of f2 in (9), we obtain after some simplification that 
1-w-z w 

(19) f2(x*) = [IA(Z) + I()] + [IA(1)+ IS(Z)]. 1 -z 1 -z 
Now Is(1) = 0 and we obtain from (11) and Lemma 1 that 

IA(1) + IS(z) = IA(Z) + Is() + S(1 - z) = IA(Z) + (1 - Z). 

Thus, we have from (19) that f2(x*) = 8w + IA(Z). 
It can readily be verified that q* E C1 and x* E C2. The optimality of q* and x* 

is now immediate from the lower bounds on fi and f2 obtained in Lemma 2. This 
establishes the claim of the lemma. ]I 

Lemma 3 establishes a LD quasireversibility property: the joint rate function 
for the mean departure rate on (0, n) and the workload at time n is the sum 
of the corresponding individual rate functions. In other words, the queue is 
approximately in equilibrium at time n (the rate function for the workload is the 
same as the equilibrium rate function) irrespective of the mean rate of departures 
on (0, n). This property turns out to be crucial to the proof of Lemma 4 below and 
thereby to the proof of Theorem 2. 

LEMMA 4. For any k E N and 0 = to < tl < *.. < tk, the random vector 
(Dn (tl),..., Dn (tk), Wln (tk)) satisfies the LDP in Rk+l with rate function 

k 
k wZl Zk Y v)-E(ti- ti1)IA(zi 

- 
zi-1) + - w. ID,W(Zi,.. Zk, W) = (ti-t iIA ( - tZi-i +8w. 

i=1 ti= - ti~ -1 / 

PROOF. The proof is by induction on k. The basis k = 1 was established in 
Lemma 3 for tl = 1, but can easily be extended to arbitrary tl > 0 by simply 
rescaling the most likely path leading to the event D (1) = z, Wn (1) = w, which 
was identified in Lemma 3. 

Assume the claim of the lemma holds for k - 1. Fix E > 0 and let Ek (w) denote 
the event 

Ek(w) = {IDn(ti) - zil < , i= 1,...,k, IWn(tk)- WI < }, 
where the dependence of Ek(w) on n, e and (ti, zi), i = 1, . .., k, is suppressed in 
the notation. For notational simplicity, we shall write a m b for la - b < e. We 
have 

(20) P(Ek(w)) > P(Ek-1 (q)) x P(Dn(tk) ' Zk, Wn(tk) X wlEk-l (q)) 
for all q > 0. By the induction hypothesis, 

(21) l gP(k- i 
(21) lim - logP(Ek_l(q)) = - (ti - t i - Zi-1 i+ q + O(e). n--+oo n i=1 ti - ti-1 
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Now, conditional on Ek- (q), Dn(tk) and Wn (tk) depend only on the arrival and 
service processes on [tk-l, tk] and on q, tk_l and Zk-1. Consequently, it is clear 
from the form of the rate functions IA and D in Assumption 2 that the joint rate 
function of (Dn(tk), Wn(tk)) conditional on Ek- (q) depends on the past up to 
tk-1 only through q, tk-l and zk-1. Therefore, we have from (20) and (21) that 

k-i 
liminf - logP(Ek(w)) > - ttti 

- 
lt-)IA - + () n I+ oo n =1 \ti - ti-i 

- ) - inf q - liminf- log P(Fk IWn(tk-1) = q) 
q>0 n ---oo on 

where Fk denotes the event Dn(tk) - Dn(tk-1) Zk - Zk-1, ln(tk) ; W. We 
recognize the infimum over q > 0 above as the limit of the scaled logarithm of 
the probability that Dn(tk) - Dn(tk-1) Zk - Zk-I and that Wn(tk) m w given 
that the queue is in equilibrium at time tk-l. Thus, by the induction hypothesis, 
the infimum is simply (tk - tk-)ID,w((Zk - Zk-l)/(tk - tk-1), w) for ID,W given 
by (8), and we obtain using Lemma 3 that 

1 zk 
(22) lim lim inf - logP(Ek(w)) - (ti -tIIA i - IA i-1) Sw 

(22 e-+o n-oo n - ti-i 

= ),W(Zl.. ,Zk, W). 

The corresponding upper bound can be obtained using the principle of the largest 
term. We note that P(Ek(w)) is bounded above by 

n 

-P(Ek- I(ie))P(Dn(tk) o Zk, Wn(tk) w wlEk- (iE)) + P(Wn (tk-) > ne). 
i=l 

Now P(Wn(tk-1) > ns) = P(W(Lntk-lJ) > n2E) < exp(-8n28/2tk_1) for large 
enough n. Hence, P(Ek(w)) is bounded above by 

neSUPP(Ek-l(q))P(Dn(tk) Zk, Wn(tk) x wIEk-l(q)) +exp( 8n- ) 
q>O 2tk-1 

The second term is negligible in comparison to the first for large n. The first term 
is simply ne times the supremum over q of the right-hand side of (20), which was 
used to obtain the lower bound in (22). Thus, we get 

lim liminf - logP(Ek(w)) < -I W(ZI, ... Zk, w). E---O n->o nn 

We have thus established the large deviation upper and lower bounds for a 
base of the topology on Rk+1. Together with the exponential tightness of 
(Dn (tl),... Dn (tk), Wn (tk)), this implies the full LDP on Rk+1 with rate function 
I , w (see [6], Theorem 4.1.11 and Lemma 1.2.18). O 
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PROOF OF THEOREM 2. For each t > 0, Lemma 4 establishes the LDP 
for every finite-dimensional distribution (Dn(t), ..., Dn(tk), Wn(tk)), where 
O < tl < .. < tk = t. These can be extended to an LDP for (Dn([0, t]), Wn(t)) 
on C([0, t]) x IR by the method of projective limits. The argument is identical to 
the proof of Mogulskii's Theorem 5.1.2 in [6], and is omitted. It is not hard to see 
that the rate function for this LDP is indeed D, w. By contraction, we also ob- 
tain the LDP for Dn([0, t]) in C([0, t]) for each t > 0. By taking projective limits, 
these imply the LDP for Dn([0, oo)) in C(IR+) equipped with the topology of 
uniform convergence on compacts, which is the projective limit topology. We can 
strengthen this result to an LDP in Y by showing that Dn([0, oo)) is an exponen- 
tially tight sequence in '. The argument is the same as in the proof of Theorem 1 
in [11] and is omitted. O 

Recall that the rate function for the sample path of the departure process is given 
by the solution of a variational problem, which is not tractable in general. In the 
discussion above, we exploited the property of LD quasireversibility to compute 
this rate function explicitly for a special class of arrival processes. We now show, 
under mild additional assumptions, that these are the only invariant rate functions 
for which LD quasireversibility holds. In other words, the invariant rate function 
is unique (at each arrival rate a) within the class of arrival processes satisfying LD 
quasireversibility. 

THEOREM 3. Suppose the arrival process {An} and the service process {Sn, 
satisfy Assumptions 1-4, and assume without loss of generality that the mean 
service rate E[S1] = As(0) = 1. Denote the mean arrival rate E[A1] by a and 
assume that ac E (0, 1) is in the interior of the effective domain of Is. Assume that 
Is is strictly convex and differentiable in the interior of its domain. Suppose the 
sequence { Dn (1), W, (1) satisfies an LDP in R2 with rate function ID, w given 
by 

(23) ID,W(Z, w) = IA(Z) + SW, 

where 8 > 0 solves AA(a) + As(-S) = 0. Then 8 = -Is(a) and IA is given 
by (11), with Xa = Is(a). 

A corollary is that if the sequence {Dn ([, t]), Wn (t)}, satisfies an LDP with rate 
function of the form (12), then IA is given by (11). To see this, note that the LDP for 
{Dn(1), Wn (1)} assumed in the theorem follows from that for {Dn ([0, t]), Wn(t)} 
by the contraction principle, and the rate function is given by (23). In other words, 
(11) specifies the unique arrival rate function (for an arrival process of rate a) 
which is left invariant by the queue and for which the past of the departure process 
is independent of the current workload in the LD scaling. 

The proof of the theorem proceeds through a sequence of lemmas. 
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LEMMA 5. Under the assumptions of Theorem 3, 8 E subdiffA (1) and 
As(-8) = IA(1) - 8. 

PROOF. Observe from (8) and (9) that ID,W(Z, w) < infqEcl fi(q). Hence, by 
the assumption of (23), we have 

(24) IA(Z) + w Sq + IA(Z + w - q) + Is(z) VO<q z+w. 

Taking z = 1 and noting that Is(l) = 0, we get IA(I + x) > IA(1) + 8x for 
all x > -1. The inequality also holds for x < -1 since IA(Z) is infinite for 
z < 0. Hence, 8 e subdiff IA(1). Consequently, AA(S) = S - IA(1), and since 
AA(8) + As(-8) = 0, the lemma is proved. n 

LEMMA 6. Under the assumptions of Theorem 3, 8 = -Is(a) and Is(a) = 
(1 - a) - IA(1). 

PROOF. Setting z + w - q = 1 in (24), we observe that IA(Z) < 8(Z - 1) + 
IA (1) + IS(Z). Taking duals now yields 

AA(O) > sup[0z - 8(z - 1) - IA(1) - IS(z)] = 8 - IA(1) + AS(O - 8). 
z 

We observe from Lemma 5 that equality holds at 0 = 0 since AA(0) = 0. 
Thus, the convex function f(0) := 8 - IA(1) + AS(O - 8) is dominated by the 
convex function AA(0), and they coincide at 0 = 0. Consequently, subdiff f(O) c 
subdiffAA (0) = {(a}, where the latter equality holds because AA is assumed to be 
differentiable at the origin, and its derivative is E[A1] = a. Now, subdiff f (0) = 
subdiffAs(-8) is nonempty because As is finite at -8 and does not take the value 
-oo anywhere. Hence, subdiffAs(-8) = {a} and, by duality, -8 E subdiffls(a). 
Now, by the assumption that Is is differentiable in the interior of its domain, we 
get I (a) = -8. 

An immediate consequence is that Is(a) = -a - As(-8). Combining this 
with Lemma 5 yields Is(a) = (1 -a)8 - IA(I). D 

LEMMA 7. Under the assumptions of Theorem 3, 

IA (Z) = IS(Z) - Is(a) +8(z -a) for all z > 1. 

PROOF. We have from (8) and the assumptions of Theorem 3 that 

IA(Z)+8w = min inf fl(q), inf f2(x), qECI xEC2 
where fi, f2, C1 and C2 are defined in (9). Now, by the convexity of IA and Is, 
we have 

f2(x) > 8q + IA(Z + w - q) + IS(z - zl + Z2). 
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Since Is is nondecreasing on [1, oo) and z2 > z for all x E C2, we obtain for all 
z > 1 that 

f2(x) 8q + IA (Z + w - q) + IS(z) = fi (q). 

Observe that if x E C2, then q E C1. Hence, 

IA(Z) + SW = inf Sq + IA(Z + w - q) + IS() Vz > 1. O<q<z+w 

Since S E subdiff A(1) by Lemma 5, the infimum above is achieved at q = 
z + w - 1 and we have 

IA(Z) = (Z - 1) + IA(1) + IS(Z). 

Substituting for IA (1) from Lemma 6 yields the claim of the lemma. [ 

REMARK. The claim of Lemma 7 holds even without the assumption of 
LD quasireversibility. In other words, if the arrival and service processes satisfy 
Assumptions 1-4 and ID(z) = IA (Z), then, for z > 1 = E[S1], IA (Z) must have the 
form claimed in the lemma. To see this, we first observe by comparing (6) and (7) 
with (8) and (9) that ID (z) = ID, W(z, 0). We then note that the proof of the lemma 
carries through unchanged if we set w = 0. 

PROOF OF THEOREM 3. Let z E [0, 1). Choose w > 1 and observe that 

inf fi(q) = inf q + IA(Z + w - q) + IS(z) qEC, O<q <z+w 

= (z + w- 1) + IA(1) + IS(Z). 

Substituting for IA (1) from Lemma 6, we get 

(25) inf f (q) = 8w + Is(z) - Is(a) + S(z - a). 
qEC1 

Next, we observe that it is not possible to have -- = 1 at the minimizer of f2(x) 
over C2. Indeed, having B = 1 would require that zl = z + w, which is impossible 
since zl < z for all x E C2 and we have chosen w > 1. 

Thus, (z + w - zl)/(l - B) is finite and greater than 1 for all x E C2, and it 
follows from Lemma 7 that 

Iz++w--zi )-I(Z+w-z-- )Is(o)+S( z+w--zl 
IA 1-B 1- I 1-Z -) 

Now Is is nonnegative, Is(1) = 0 and Is was assumed to be strictly convex. Hence, 
there is an e > 0 and an r > 0 such that 

IS 
z + -Z >E( 

- 1-)I I - p - I1 -fl 
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Combining the two equations above yields 

IA 
+ w - 

)> +)(Z + W Z1 
)- c(l + S(a) 

We now obtain from (9) and the nonnegativity of IA and Is that 
f2(x) > 8q + (8 + e)(z + w - zl) - (1 - f)({8a + e(1 + r) + Is(a)). 

Since zi < z, q > 0 and Bf E [0, 1], for all x E C2, we have 
(26) inf f2(x) > (8 + s)w - a - 1 - - Is(a). 

xEC2 

Fixing z and comparing (25) and (26), we see that for large enough w, the 
infimum of fi over C1 is smaller than the infimum of f2 over C2. Thus, it follows 
from (8), (23) and (25) that 

IA(Z) + S = + IS(Z) -Is(a) + 8(Z - a) 
for all z E [0, 1) and w sufficiently large. In particular, IA(Z) = IS(z) - Is(a) + 

(z - a) for all z E [0, 1). The same equality was established for z > 1 in Lemma 7, 
and is trivial for z < 0 since IA and Is are both infinite on the negative half-line. 
This completes the proof of the theorem. D 

EXAMPLES. We now describe some examples of arrival and service processes 
where the law of the departure process is known explicitly and is the same as that 
of the arrival process. 

Suppose the service process {Sn, n E Z} is an i.i.d. sequence of geometric 
random variables of unit mean and suppose the arrival process {An, n E Z} is an 
i.i.d. sequence of geometric random variables of mean a < 1. In other words, 

P(S1 =k)=()+, P(AI=k)= 1 (i 
a 

k >0. 
\2/ l +a +a 

It was shown by Bedekar and Azizoglu [2] that, in equilibrium, the departures 
are i.i.d. geometric with mean ao and the queue length is independent of the past 
departures, that is, the queue is quasireversible. 

It is easy to verify for this example that the assumptions of Theorem 2 hold, 
with 

l+x 
Is(x) = x logx - ( + x) log 2 

Hence, by Theorem 2, 8 = -Is(a) =-log(2a/(1 + a)) and the invariant rate 
function for an arrival process of rate a is given by 
IA(X) = Is(x) - Is(a) - I ()(x - a) 

2x 1+x 2a 1+a 2a = x log -log -a log + log -(x -a)log 1?x ( 2 1 +a 2 +a 
x l+x = x log - -(1 + x) log a +a 
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The last expression is the rate function for the arrival process {An} described 
above. 

Recall that the arrival and service processes to the queue are not constrained 
to be integer-valued. A continuum version of the geometric model described 
above has i.i.d. exponentially distributed {Sn, and {An} with E[S1] = 1 and 
E[A1] = a < 1. It was shown by O'Connell [20] that the departure process in this 
model has the same law as the arrival process and the workload is independent of 
the past departures. For this model, we have 

Is(x) =x -1 -logx 
and the assumptions of Theorem 2 are satisfied. Thus, the invariant rate function 
corresponding to an arrival rate of a is given by 

IA(X) = IS(X) - Is(a) - Is(a)(x - ) 

= x -a -log - (1 (x-a) 

x x 
=- - - log-. a a 

The last is the rate function for the fixed point described above, namely, an i.i.d. 
exp(l/a) sequence of arrivals. 

The last example we consider involves i.i.d. Bernoulli arrivals and services. 
There are either one or no arrivals in each time slot, an arrival occurring with 
probability p. In each time slot, there is a probability q that one customer can be 
served and a probability 1 - q that no service occurs (the mean service rate is q 
rather than 1, but Theorem 2 is still applicable). We obtain that 

x log +(l -x)log x E [0, 1], 
Is(x)= q -q 

oo, otherwise. 

Using Theorem 2, we compute the invariant rate function for an arrival process 
of rate p. We obtain that IA() = IS(X) - IS(p) - I(p)( - p) is infinite for 
x ? [0, 1], whereas for x E [0, 1], 

x 1-x 
IA () = log - + (1 - x) log 

q l-q 

- plog 
p - (1 - p) log 1 
q 1 -q 

-(x- p)(logp --log p) 
q q 

x 1-x = x log-+ (-x) log p -p 
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This coincides with the rate function for the Bernoulli(p) arrival process, which is 
known to be a fixed point for the Bernoulli(q) service process [2]. 

The examples described above are, to the best of our knowledge, the only 
instances in which the law of the fixed point is known explicitly. In all these cases, 
the large deviation rate function of the fixed point is as specified in Theorem 2. 

In the next section, we show that if the service process is an i.i.d. sequence, 
then there is a fixed point at each rate a < 1, that is, an arrival process that has its 
probability law preserved by the queueing operator. It was shown by Chang [5] 
that there is at most one such probability law for each a < 1. We conjecture 
that each of these fixed points satisfies a sample path LDP with rate function 
specified by Theorem 2. If the fixed points satisfy a sample path LDP and LD 
quasireversibility, then it follows from Theorem 3 that the rate function should be 
of the form specified by Theorem 2. 

We now present some heuristic arguments that motivate the conjecture. Recall 
that if the arrival process is an i.i.d. sequence, then AA is analytic on the interior 
of its domain, so that specifying AA on an interval specifies it everywhere on 
its domain. In fact, this is true even if the arrival process is not i.i.d., provided 
it does not have long-range interactions (see, e.g., Theorems 5.6.2 and 5.6.5 in 
Ruelle [22]). Since the service process was assumed to have an exponentially 
decaying tail and correlations, and stochastically dominates the departure process, 
it is plausible to expect that the fixed point does not have long-range correlations. 
In particular, we expect that the fixed point satisfies a sample path LDP with rate 
function of the form in Assumption 2 and that AA is real analytic on the interior 
of its domain. Now, by the remark following the proof of Lemma 7, IA is uniquely 
specified on [1, oo), and so AA is uniquely specified on [IA (1), oo) dom(AA). 
Hence, AA should have a unique analytic extension on its domain. This suggests 
that even without the assumption of LD quasireversibility, there is a unique 
invariant rate function and, therefore, that this is the rate function of the fixed 
point. 

In Section 4, we consider an infinite tandem of queues with independent and 
identically distributed service processes. We show that for an arbitrary arrival 
process of rate a entering the first queue in the tandem, the departure process 
from the nth queue in the tandem converges in law to the fixed point at rate a as 
n -> oo. Consider an arrival process A1 into the first queue of the tandem and let 
Ak denote the arrival process into the kth queue. If A1 satisfies a sample path LDP 
with rate function specified by Theorem 2, then so does Ak for every k. The fact 
that the Ak's converge in law to the fixed point provides additional motivation for 
our conjecture, but we have not been able to show convergence in a strong enough 
topology to establish the conjecture. 

3. Existence of fixed points. In this section we present some results on 
the existence of fixed points in a discrete-time setting, mostly using arguments 
analogous to those presented in [16] for the continuous-time setting. 
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Consider the space IRz equipped with the topology of coordinatewise conver- 
gence, which is metrizable using the metric 

1 )Ii --yi I 
( ) 

iz 21il 1 + Ixi - yi I 

We let M be the space of stationary probability measures on IRz which are 
stochastically dominated by the service process and equip it with the weak 
topology generated by the metric d(-, .). More precisely, let Vn denote the 
distribution of S1 + .- + Sn, where (Sn, n E Z) is a realization of the service 
process, and define fn :Rz -> JR by fn(x) = xl + " + xn. We say that a 
stationary probability measure X on Rz is in M if, for each n E N, X o fn 1 
is stochastically dominated by Vn. Weak convergence in M coincides with 
convergence in distribution of all finite-dimensional marginals and can be metrized 
using, for instance, the Prohorov metric [3]. Thus, M is a closed subset of a Polish 
space, it is clearly convex and it can be shown to be compact. We denote by Me 
the subset of M consisting of ergodic measures and by M' (resp. Me) the subset 
consisting of measures (resp. ergodic measures) whose one-dimensional marginals 
have mean a E JR. 

Consider an infinite queueing tandem. Let An denote the amount of work 
entering the first queue of the tandem in time slot n and let Sk denote the amount 
of work that can be served by queue k in time slot n, k E N, n E Z. Let Wk denote 
the workload in queue k at the beginning of time slot n and let Dnk denote the 
amount of work departing queue k and entering queue (k + 1) during time slot n. 
We assume the following in the remainder of this section. 

ASSUMPTIONS. Sk is an i.i.d. sequence for each fixed k and is identically 
distributed for all k, 

ES' = 1, As(O) := log E exp0S < oo for all 0 in a neighborhood of 0. 
The service distribution is nondegenerate, that is, P(S 1 4 1) > 0. The arrival 
process An and the service processes Sk at the different queues are mutually 
independent, An is stationary and ergodic with rate a < 1, that is, 

I n 
lim - Ai = E[A] =a a.s., n--oo n i=l 

and An is stochastically dominated by the service process (at any queue). In 
addition, 

1 
AA() := lim -log E expO(A1 +... + An) n- oo n 

exists as an extended real number for all 0 E 1R, and AA is differentiable in the 
interior of its domain (the set where AA is finite) and steep, that is, IA' (0)I -- oo 
as 0 approaches the boundary of its domain. 
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It follows from the above assumptions that the departure process (Dk, n E Z) 
is stationary and ergodic with rate a, for each k e N. Recall that AA and As are 
convex functions and that As has infinitely many derivatives in the interior of its 
domain (see [6], e.g., for proofs). Since the arrival process was assumed to be 
stochastically dominated by the service process, it follows that AA(0) < As(O) 
for 0 > 0 and so AA is finite in some neighborhood of 0 (finiteness for 0 < 0 is not 
an issue since the An are nonnegative). We have 

AA(O) = As(O) = O, AA(0) = E[A1] = < 1 = E[S] = A'(O) 

and so 

(27) 30 > 0: AA(0) + As(-0) < 0 V E (0, 00). 

Let MO C M be the set of stationary probability measures on Rz that have 
ergodic decompositions that do not contain an atom at the service distribution. We 
can define the queueing operator Q on Mo by setting Q(v) to be the law of the 
departure process corresponding to an arrival process which is independent of the 
service process and has law v E Mo. It follows from Loynes's construction [15] 
that Q2 is well defined and maps Mo into itself, that it preserves ergodicity, that 
is, (2(Mo n Me) c Mo n Me, and that it is mean-preserving in the sense that 
( (Me) C (Me) for all a < 1. Moreover, Q is linear, that is, 

02(vi + (1 - P)V2) = Q(V1) + (1 - ,)Q(v2) 

for all vl, v2 E Mo and , E [0, 1]. Finally, Q is continuous in the weak topology 
restricted to Mo. The proof of the last statement is virtually identical to that of 
Theorem 4.3 in [16] and is omitted. 

Let tuo denote the law of (An, n E Z), ,Uk denote the law of (Dk, n E Z) and 
AS denote the law of the service process (Sn, n E Z). We have assumed that 
/Io E Me for some a < 1, whereas /us E Me, so uto is not the service distribution. 
Since tuo consists of a single ergodic component, it follows that ,uo E Mo. Hence, 
so is iUk = kk(tuo) for any k E N, where (k denotes the kth iterate of 2. Since 
Mo is clearly convex, 

k- 1 
(28) k := k E Mo forall k E N. 

i=O 

Since M is compact, there is a subsequence k(j) of N such that .k(j) -> X for 
some A E M. We shall show that A is a fixed point of the queueing operator. 

THEOREM 4. Let A E M be defined as above as a subsequential limit of the 
Xk 's, where Xk is the Cesaro average of the distributions of the departuresfrom the 
first k queues in the tandem. Then X E Mo and (2(X) = X, that is, X is a fixed point 
of the queueing operator. 
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PROOF. Since Xk E Mo and Q: Mo - Mo, we have Q2(Xk) E Mo for all k, but 

I k-I k 1 
(29) Q(=k) -= ) 1 ) i== k + ( - 0) k" i=0 k ^ i=l k 

To obtain the second equality, we have used the fact that Q is linear and that 
Q(/Li) = jji+l by definition of the [ti. It is clear from (29) that 

(30) lim ((Xk(j)) = lim Xk(j) = X. 
j--oo j--oo 

We show in Lemma 10 below that X E Mo. Since (2: Mo -- Mo is continuous in 
the weak topology and Xk(j) -> A in this topology, it follows that 

(31) lim (2(k(j)) = (Q). 
j-oo 

By (30) and (31), 42(X) = A. E 

LEMMA 8. Consider a sequence of stationary arrival distributions Vk E M, 
converging weakly to a stationary arrival distribution v E M. Let Wo(k) (resp. Wo) 
denote a random variable with the distribution of the workload at the beginning 
of time slot zero when the arrival process has distribution Vk (resp. v) and is 
independent of the service process. Then we have 

liminfE[Wo(k)] > E[Wo]. 
k- cc 

The result holds even if E[W0] = +oo. 

The proof proceeds along the lines of the proof of Lemma 4.4 in [16] and is 
omitted. 

LEMMA 9. Let Wo(k) denote a random variable with the distribution of 
the workload at the beginning of time slot zero when the arrival process has 
distribution Xk and the service process has distribution Axs. Then we have 

limsup E[Wo(k)] < +oo. 
k -oo 

PROOF. Recall that Wo is the waiting time at queue k at the beginning of 
time slot zero when the arrival process into this queue has distribution ,tk and is 
independent of the service process at this queue, which has distribution Azs. It is 
now immediate from the definition of Ak that 

~~(32) Wo(k) a_ W 1 k 1 k 
(32) Wo=(k) k Wi and so E[Wo(k)]= - E[W], 

i=1 i= 
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where = denotes equality in distribution. But, by Loynes' construction, 
-1 

(33) Wo=sup E Ai-Si, 
n>O i=-n 

where, as usual, we take the empty sum to be 0. We also have that 
(34) Dk Dk-1 +W -Wk n Z, k= 1,2,3,..., 
where DO is identified with An. Using (33) and (34), it can be shown inductively 
(see, e.g., [9] or [1], Proposition 5.4) that 

k -1 k -nj_l-1 

(35) EW- sup E Ai-E E S/, 
i=l nk>->nl>O i=-nk j=l i=-nj 

where no is defined to be zero. Hence, by the mutual independence of the arrival 
process and the service processes at the different queues, we have for all x and any 
0 > 0 that 

P( Wo >kx 

-1 k -nj_l-l 
< e-kxE sup exp0 Ai-E E s) 

-nk_>..>nl>O i=-nk j=l i=-nj 

oo -1 \ 
~ 

/ k -nj-l-1 _ 
<e-Okx E exp 0E Ai E sup exp -0 E S . 

nk=0 i=-nk =nk>>nl>O j= i=--nj 
To obtain the last equality above, we have used the fact that the expectation of the 
supremum of a collection of nonnegative random variables is no more than the 
sum of their expectations. Now, the number of terms over which the supremum in 
the last line above is taken is the number of ways to partition nk into k nonnegative 
integers, which is (nk k). Moreover, since the SJ for different i, j are i.i.d., the 
random variables over which the supremum is taken are identically distributed, 
with the distribution of exp-0 -l k SI. Thus, we obtain that 

in= n =-n 
(36) ___ 

k 
=O i=-n _ 

Since AA is convex, it is continuous on the interior of its domain, and on this 
set it is the pointwise limit of continuous functions, 

) :=log exp(A + + A An(O)'= - log E exp0(A1 +-.. + An). n 
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Hence AA is uniformly continuous on compact subsets of its domain and the 
convergence of An to AA is uniform on these subsets. Let 00 > 0 be in the interior 
of the domain of A. Then, for any E > 0, there is an N < oo such that 

(37) An(0) - AA()I < Vn N, 0 E [0, 00]. 

Recall that An(0) < As(0) for all 0 > 0 and n E N since the service process was 
assumed to stochastically dominate the arrival process. Hence, we have from (36) 
and (37) that, for all 0 E (0, o0), 

P( Wo >kx 

-Ni=1 

< eOkx n k) exp(n(As(0) + As(-0))) E k 

+ L n + k ) exp(n(AA(0) + As(-0))) 
n=N 

Observe from (27) that we can find 0 E (0, 00) and E > 0 sufficiently small that 
AA(0) + E + AS(-0) < -E. For such 0 and E, we get 

P EjW >x 1 
i=1 

< e_O ( e < ek 
+ 
k exp(n(As(0) + As(-0))) 

- n=0 

+ (n +k) e-n 

< cNke-Okx = ce-k(Ox-lnN) 

where c is a constant that may depend on 0, E and N, but does not depend on k. 
Thus, we obtain using (32) that 

E[Wo(k)] = P(Wo(k) > x) dx 

2 In N/e oo /-k0x\ < I dx+ cexp dx 
JO J21nN/0 \ 2 
21nN 2c 

< 0 + k 0 kO 
The above quantity is bounded uniformly in k, which establishes the claim of the 
lemma. O 
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LEMMA 10. The distribution X, which was defined in the statement of 
Theorem 4 as a subsequential limit of the Xk 's (mixtures of departure distributions 
from successive queues in the tandem), does not contain an atom at the service 
distribution. In other words, X E Mo. 

PROOF. Since the service process was assumed to be nondeterministic, it 
follows from Loynes's construction that if the arrival process is independent of 
the service process but has the same distribution, then the expected workload 
at time 0 is infinite. By the linearity of the queueing operator, the same is true 
if the ergodic decomposition of the arrival distribution contains an atom at the 
service distribution. In other words, if Wo denotes the workload at time 0 when 
the arrival process has distribution X and is independent of the service process, 
then 

M \ Mo =- E[Wo]=+oo. 

Now Xk(j) -> X E M by definition, so it follows from Lemmas 8 and 9 that 
E[Wo] < +oo. Hence X e Mo. D 

Now X is a stationary process belonging to Mo and hence could consist of 
stationary components at different rates. Define Msp, the set of stationary measures 
of "pathwise rate C" as those measures in Mr that have ergodic components that 
belong only to Me. Thus if a process X = {Xn, n e Z} is distributed according to 
some v E Mp, then a.s. 

1 n 
lim -X(i) =-. n oon i 1 

The fixed point X obtained above can be decomposed into its components in 
UEo[0,1)Mp as 

X = J I) (dt), 

where (P is some measure on [0, 1). By linearity of d., (2(X) = f0 d(X)cI(dr). 
However, the queueing operator also preserves rates: )X and Q (X?) must have the 
same rate for all r in the support of (D. Thus Q2(X) = X implies Q(X)) = )X, (c a.s. 
Therefore there exists a fixed point for Q, in MAp for ~ belonging to the support 
of (. 

However, the question remains as to whether Q has an ergodic fixed point 
of rate 4. We shall settle this question in Theorem 6 below as a corollary to 
Theorem 5. 
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4. Attractiveness of fixed points. In this section we present some results on 
the attractiveness of fixed points, which are discrete analogues of those obtained 
by Mountford and Prabhakar [17] in the continuous-time setting. 

Consider an infinite tandem of queues indexed by the nonnegative integers. Let 
S = {Sn, n E Z} be an i.i.d. family of nonnegative integer-valued random variables, 
where Sn denotes the maximum amount of service effort available at queue 0 in 
the nth time slot. For n E Z, k > 1, let Sk be the maximum amount of service 
effort in the nth time slot at queue number k. The processes Sk = {Sk, n E Z} are 
i.i.d. and independent of S, and Sk - S1 for all n and k. Consider a stationary and 
ergodic arrival process A = {An, n E Z}, where An takes values in the nonnegative 
integers, E(A1) = a < E(S1). We shall assume that A is independent of the 
service processes S and Sk, k > 1. 

Suppose that A is input to queue 0 and let Ak = {Ak, n E Z} be the arrival 
process to queue k. The result of Loynes [15] asserts that each Ak is stationary and 
ergodic, and E(Ak) = a. In what is to come, it is convenient to use the notation 
A1 = ( (A, S) to denote that A1 is the departure process from a queue with arrival 
process A and service process S. Similarly, write Ak+l = Q2(Ak, k). 

We proceed as follows. First, by assuming the existence of an ergodic fixed 
point F at mean a, we show that Ak converges to F in the p metric (defined 
below). 

DEFINITION 1. The p distance between two stationary and ergodic sequences 
X = {Xn, n E Z} and Y = {Yn, n E Z} of mean a is given by 

p(X, Y) = inf Ey IX1 - Yi I, 

where y is a distribution on Me x M,-the space of jointly stationary and ergodic 
sequences (X, Y), with marginals X1 and Y1 distributed as X1 and Y1. (See, e.g., 
Gray [13] or Chang [5], Definition 2.3, for further details of the p metric.) 

THEOREM 5. Consider the infinite queueing tandem described above. Sup- 
pose queue 0 and hence queue k, k > 1, admits a mean a stationary and ergodic 
fixed point F. Suppose also that P(Sn = 0) > O. Then p(Ak, F)O-> as k goes to 
infinity. 

PROOF. Our method of proof will closely follow that of [17]; we shall merely 
set up the language and notation needed to import the argument in [17]. 

We use the coupling in [17]. Let F be distributed as the fixed point, independent 
of A and of all service variables. The coupling is achieved by allowing the service 
process S to serve both the processes A and F. Thus F1 = -2(F, S) is the arrival 
process to queue 1, and for each k > 1, Fk+l = 0(Fk, Sk) is the arrival process to 
queue k + 1. Note that the processes Fk are all ergodic, of mean a and distributed 
as F. It is helpful to imagine that there are two separate buffers at each queue k: 
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one for the A customers and one for the F customers. This makes explicit the 
notion that customers of one process do not influence the waiting of the customers 
of the other process. The coupling between the two processes at each queue merely 
consists of using the same service process for both the A and the F customers. 

The customers of A U F are colored yellow, blue or red according to these rules: 
* Customers in A n F are colored yellow. 
* Customers in A but not in F are colored blue. 
* Customers in F but not in A are colored red. 

Let Y, B and R be the process of yellow, blue and red customers, respectively. For 
each k, color the points of Ak U Fk in a similar fashion and define yk, Bk and Rk 
to be the corresponding processes of yellow, blue and red customers. As in [17], 
we adopt the following service policy to ensure that once a customer is yellow, it 
remains yellow forever. Thus at each queue: 

(a) Yellow customers observe a "first in, first out" rule. 
(b) Yellow customers take priority over any blue or red customers. 
(c) If a blue customer arrives at a queue at which there are red customers, then 

it immediately "couples" with the red customer who arrived first and has not yet 
coupled. Both the "coupled" customers will be colored yellow in future queues. 
A similar rule applies for red customers. 

Given the joint ergodicity of the trio (Ak, Fk, Sk), it is not hard to see that 
the process (yk, Bk, Rk) is jointly ergodic. The problem is that a limit of the 
(yk, Bk, Rk) need not be ergodic. However, as a result of the above service policy, 
the (nonrandom) density of yellow customers increases with k. Using 3) to denote 
density, we wish to show that ?)(yk) increases to a. 

Following [17] we argue by contradiction and hence suppose that there 
exist customers in the initial arrival processes A and F that never couple and 
therefore never become yellow. We call these customers ever-blues and ever-reds, 
respectively. Given a customer V (in either A or F), write V(k) for their departure 
time from the kth queue. From the service policy and coloring scheme, we readily 
obtain: 

LEMMA 11. Let V and U be two customers (in A or F, not necessarily 
belonging to the same initial point process) such that V(k) > U(k) for some k. 
If U(k + 1) > V(k + 1), then customer V must be colored yellow after k + 1 
queues. 

The importance of Lemma 11 is that among customers who never become 
yellow, order is preserved: if an ever-blue in A arrives before an ever-red in F, 
then it will arrive before the ever-red after passing through any number of queues. 
In a manner entirely analogous to [17], this order preservation property can be used 
to obtain the following lemma (identical to Lemma 3.1 of [17]). 
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LEMMA 12. If the density of ever-blues is strictly positive, then there exists 
an e, not depending on k, such that the (nonrandom) density in Fk of red 
customers C satisfying "there exist blue customers of Ak in (C(k), C(k) + 2/E]" 
must be at least e/2. 

Now by the stability of queue 0 under input F and the joint ergodicity of (F, S), 
the conditional probability p that an arrival of F sees an empty queue given past 
arrivals is a nonzero random variable. Because F is a fixed point, the pairs (Fk, Ak) 
are distributed as (F, Ak) and p is also the conditional probability that an arrival of 
any Fk sees an empty queue. Take 8 > 0 to be such that the density of customers 
in Fk for whom p < 3 is less than e/4. 

Given this and the conclusion of Lemma 12, we obtain the next lemma (similar 
to Lemma 3.2 of [17]). 

LEMMA 13. Under the assumptions of Lemma 12, there exist strictly positive 
E and 8 such that for every k, red customers C in Fk with the properties: 

(a) there exists a blue customer of Ak in (C(k), C(k) + 2/E] and 
(b) P(C arrives at an empty queue IFk) > 8 

have density at least e/4. 

Consider a red customer R who satisfies properties (a) and (b) of Lemma 13. 
Because of property (b) the chance that R finds queue k empty upon arrival is at 
least 8. Since the process Sk is i.i.d., independent of Fk and s = P(S1 = 0) > 0, 
the chance that R waits at least 2/e units of time at queue k before departing is at 
least s '2/E1-. Property (a) guarantees that a blue customer will arrive at queue k 
while R is waiting. This implies that R will be yellow in Fk+l. Therefore, under 
the assumptions of Lemma 12, ((yk+l) - J(yk) > 8s[2/s1-le/4 for all k. This 
contradiction establishes that D (yk) increases to a. 

Let v and vk be the joint distributions of the processes (A, F) and (Ak, Fk), 
respectively. Since A and F are independent, v equals the product measure 
o(A) x ?(F)-clearly a member of Me x Me. The translation invariant nature 
of the queueing operation preserves joint ergodicity. Therefore, each vk is also a 
member of Me x Me. 

Now D(k) = EVk min(Ak, F1). Therefore, as in Corollary 2 of [21], we obtain 

p(Ak,Fk) = infEylAI-Fkl 

< E?k]Ak-FkI 

= Evk(Al + Fk - 2 min(Ak, Fk)) 

= 2(a _-)D(yk)) 
k-+oo 

- 0. 
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This concludes the proof of Theorem 5. D 

THEOREM 6. If E eM is a fixed pointfor the queue, then it is necessarily 
ergodic; that is, X E M . 

PROOF. Given Theorem 5, the proof is identical to the proof of Theorem 5.2 
in [16] and is omitted. D 
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