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Abstract

We explore the problem of sharing network resources when users’ preferences lead to temporally concentrated loads, resulting in an
inefficient use of the network. In such cases external incentives can be supplied to smooth out demand, obviating the need for expensive
technological mechanisms. Taking a game-theoretic approach, we consider a setting in which bandwidth or access to service is available
during different time slots at a fixed cost, but all agents have a natural preference for choosing the same time slot. We present four
mechanisms that motivate users to distribute the load by probabilistically waiving the cost for each time slot, and analyze the equilibria that
arise under these mechanisms.
q 2002 Published by Elsevier Science B.V.
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1. Introduction

Competition for network resources is intrinsic to a
network’s operation and leads to congestion. Since users
access resources in a distributed and uncoordinated fashion,
it is common for a network to experience congestion even
when the average demand for a resource is much less than
its capacity. Some of these congestion epochs are simply a
product of the statistical nature of user access patterns and
traffic types, and are thus unpredictable. To cope with this
lack of coordination among users and the unpredictability of
congestion epochs, networks send ‘congestion signals’ to
users to help them share its resources in a fair and
satisfactory fashion. For example, packets at a congested
router may be either dropped or marked [5].

A great deal of network congestion is not only caused by
a lack of coordination, but also by users who aim to selfishly
maximize the bandwidth available to them [18]. There
exists a substantial body of work on the fair management of
this sort of congestion in networks. In particular, the
problem of designing congestion control and pricing

mechanisms to provide differentiated qualities-of-service
(QoS) in the Internet has received a lot of attention recently.
The first common type of solution to this problem is
technological: the network can erect ‘bandwidth firewalls’
between packet flows using scheduling algorithms like
Weighted Fair Queuing [3]. Such scheduling algorithms
decrease or eliminate the dependence of one flow’s QoS
from the QoS of other flows. They can be difficult to
implement in high-capacity routers, however, as they
require the maintenance of per-flow state to distinguish,
buffer and schedule the packets of individual flows. This has
led researchers to explore trading off performance for
simplicity of implementation, yielding router mechanisms
that provide approximate fairness [6,16,17].

An alternate line of research takes an economic approach
to congestion management. Following this approach the
network attempts to induce users to condition their flows;
this avoids the implementation complexity inherent in
erecting explicit bandwidth firewalls. Using ideas from
economics, MacKie-Mason and Varian [12] argued that this
incentive can be provided by charging agents for the
damage caused to others by their ill-conditioned flows. This
work proposes a ‘smart market’ that uses bids to set a price
for network usage at each of several time slots. Gibbens and
Kelly [8] suggest charging a user for the role its packets play
in causing congestion; see also Refs. [9,10]. Odlyzko [14]
proposes ‘Paris Metro Pricing’: partitions of the network
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that behave identically but charge different prices, inviting
users to choose the partition they believe will offer the best
balance of cost and congestion.

In some situations, times of high demand are regular
and predictable. Such focused loading can occur because
many users’ utility functions are maximized by using the
network at some specific time. For example, early studies
of long-distance telephone networks show a spike in
usage when rates drop [13]. Fig. 1 a representative graph
adapted from p. 450 of Ref. [13], which shows telephone
network traffic versus time of day. Note that usage falls
off before the 1 PM rate drop, spikes afterwards and then
falls off again. A recent study [1] considers dial-up data
traffic in Ireland and the UK—where ISPs provide free
Internet access but users pay for the duration of their
phone connections—where a focused load on the
telephone network occurs from an increase in data
connections when phone charges drop. Web servers
also experience focused loading just before deadlines, or
just after new content or services are made available.
While these times are known well in advance, users have
no incentive to avoid accessing the web site close to the
deadline and thus can cause server overloads or crashes,
to which system managers typically respond by buying
more resources.

What approaches would more directly address the
source of the problem? It is instructive to examine a
particularly elegant solution employed by radio broad-
casters. To boost audience levels, radio shows routinely
offer prizes to listeners such as concert tickets, vacations
and money. Listeners tune in, wait for a signal such as a
particular song and then call in hoping to win the prize.
Of course, this invites an episode of severe focused
loading at the switch board of the radio station as many
listeners simultaneously call. The brilliantly simple way
out is to announce that ‘caller number 9’ will be the
winner. This provides an incentive for listeners to
randomize their call-in times—calling in too early or
too late will not work—and the focused load is thereby
diffused.

Of course, many of the general-purpose congestion
management techniques surveyed above may also be
applied to the special case of focused loading. We
believe, however, that separate consideration of this
special case is worthwhile, for two main reasons. First,
the fact that focused loading occurs at very predictable
times means that it is possible to know in advance the
cases for which a specialized solution should be used.
Second, the generality of the above congestion manage-
ment techniques prevents them from exploiting known
information about agent valuation functions. Focused
loading occurs because many agents prefer to use the
network at the same time. Taking this fact into account
makes it possible to design mechanisms that collect more
revenue and make fewer (e.g. computational) demands on
the network.

In this paper1 we propose a game-theoretic model of the
problem of defocusing predictable and time-dependent
focused loads. We attempt to explain why techniques such
as the radio show announcement can be effective, while also
contributing a formal model that permits analysis. While we
do not rely on any particularly advanced results from game
theory or mechanism design, we do assume that the reader is
familiar with such concepts as individual rationality, risk
attitudes (e.g. risk neutrality, risk aversion) and dominant
strategies. Also in the game-theoretic tradition, we refer to
users as agents. Good introductions to the concepts listed
above are provided in Refs. [7,15].

In Section 2 we give a formal model of the temporal
resource contention problem, define metrics for evaluating
agent distributions and related notions of optimality, and
specify agent utility functions. In Section 3 we propose a
simple mechanism under which load balancing is a weak
equilibrium for agents who value slots identically. We
strengthen this to a strict equilibrium in Section 4 and also
prove that this mechanism is arbitrarily close to optimal. In
Sections 5 and 6 we relax the assumption that all agents
have identical utility functions and present two mechanisms
that balance load when only bounds on agent valuations are
known. Since these mechanisms cannot take into account
exactly how much each agent would be willing to pay to use
the network, these mechanisms are not optimal; however,
we prove a bound on their optimality which depends on the
tightness of the bound on agent utility functions. If these
mechanisms were used in the original case where agents
value slots identically, then they too would be arbitrarily
close to optimal. Finally, in Section 7 we summarize and
compare the four mechanisms presented in this paper.

2. Problem definition

In order to motivate the notation that we will use
throughout the paper, it is helpful to begin with an example.
Consider a network resource with a fixed number of
identical time slots, where usage cost does not depend on
the time slot. For example, consider a usage-based web
service such as a pay-per-view streaming video service in
which usage is divided into half-hour blocks from 7 PM to
midnight. We assume that each agent wants to use the
network during only one time slot, that each agent knows his
own valuation for each slot, and that all agents’ utilities are
maximized by using the network during the same slot. For
example, all agents might prefer to use the network from
7:00 to 7:30, having strictly monotonically-decreasing
valuations for later slots as compared to earlier slots.
Since time slots are priced identically, rational agents would
all choose to use the network from 7:00 to 7:30, leading to a
focused load. We further assume that although the capacity

1 A preliminary version of this paper was presented at the ACM

Conference on Electronic Commerce, 2001 [11].
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of the network resource is unlimited (e.g. hosted on an ASP)
the operator of the resource has an exogenous desire for
users to de-focus their demands (e.g. the ASP charges the
operator for peak bandwidth used).2

2.1. Mechanism characteristics

In order to spread out the focused load, the network will
provide agents with an incentive to choose slots other than !s:
In this paper we will consider mechanisms in which agents
are probabilistically spared the usage cost for the slot they
choose. The cost of using the slot is waived according to a
probability which depends on the slot chosen, and which is
independent of the probabilities corresponding to other
slots.

More formally, a mechanism F is defined by a tuple
kt;m;N; f ð·Þl: The network operates over t time slots, where
each slot has a fixed usage cost of m, and where the set N of
n agents, a1…an; intend to use the network. Each agent ai
takes an action Ai of using a slot. The function f :
A1 £ · · · £ An ! ½0; 1$n maps the actions taken by all agents
into individual probabilities Pi that the cost of the slot
chosen by ai will be waived. Though f is specified by the
mechanism, the network must draw from each Pi to
determine whether the usage cost will actually be waived
for each agent. Note that the Pi’s are independent. By q we
denote the expected number of slots that will be offered to at
least one agent for free. The distribution of agents is denoted
d, and so dðsÞ is the number of agents who chose slot s.

2.2. Agent characteristics

We assume that all agents are risk neutral. Agent ai’s

valuation for slot s is given by an arbitrary non-negative

function viðsÞ: Let !si ¼ arg maxsviðsÞ and si ¼
arg minsviðsÞ: Because we are concerned with cases in

which focused loading occurs we will assume that all

agents have identical and unique most- and least-

preferred slots, although this assumption is not required

for any of our results. (If agents find several slots to be

the most preferable, some amount of load balancing is

likely to occur without any intervention by the network,

as agents will distribute themselves across these slots.)

Therefore, we define constants !s and s such that for all

i, !si ¼ !s and si ¼ s: In Sections 3 and 4 we will make

the assumption that all agents’ valuation functions are

identical (in these sections we will use the notation v

rather than vi to describe agents’ valuations). Of course

this assumption is not realistic; we relax it in Sections 5

and 6. Let vl and vu be lower and upper bounds on all

agents’ valuations, respectively: i.e. ;i; s vlðsÞ # viðsÞ #
vuðsÞ: It is important to note that these bounds apply to

all agents: in our model no agent has a valuation for

slot s lower than vlðsÞ or higher than vuðsÞ.3 Using this

notation, the restriction on agents’ valuations in

Sections 3 and 4 can be understood as the case where

;s vlðsÞ ¼ vuðsÞ: Finally, each agent ai may also receive

a signal from the network, denoted sðaiÞ:
In our model, the decision faced by agents is simply

to choose a slot s. The space of agent strategies is the

space of all functions mapping from the information

available to a probability distribution over slot choices.

We denote an element of as S ¼ PðsÞ: a distribution

over slot choices. Agents are aware of the mechanism

and consider it when determining their strategies. Let

w [ n denote a set of agent strategies, which we

formally call a strategy profile. Let wðiÞ denote ai’s

strategy under strategy profile w; and let {w \i; S} denote

the strategy profile where all agents j – i choose the

strategy wðjÞ and agent ai chooses the strategy S. We

can write agent ai’s expected utility under strategy

profile w (recall that wðiÞ is a distribution over slot

choices for agent ai; and hence wðiÞðsÞ is the probability

Fig. 1. Quarterly trunk calls on weekdays in the United Kingdom,

December 1975.

2 A number of proposals for usage-based pricing of bandwidth suggest
charging according to the ‘effective’ bandwidth consumed by an operator.

Roughly, the effective bandwidth of a connection is a value between the

mean and peak bandwidths, capturing the trade-off between the long-term

average amount of bandwidth used by the connection and the instantaneous
peak bandwidth consumption. See, for example Ref. [4], and the references

therein.

3 While these bounds strengthen our results, the assumption that they

exist is not unrealistic. The upper bound is easily justified by the fact
that no agent is willing to pay an arbitrarily large amount. The lower

bound is trickier, since agent ai might simply not be interested in using

some slot s (i.e. viðsÞ ¼ 0). However, since we are interested in

defocusing the load, in practice we will be considering time slots that
agents want to use. Therefore, it is not unrealistic to assume that every

agent has a non-zero valuation for every slot.
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that agent ai will choose slot s under strategy profile w):

uiðwÞ ¼
X

t

s1¼1

…
X

t

si¼1

…
X

t

sn¼1

!"

wð1Þðs1Þ·…·wðnÞðsnÞ
#

·

"

viðsiÞ2
$

12 f ðs1;…; snÞi
%

m

#&

ð1Þ

We can now give a key definition:

Definition 1. w is a Nash equilibrium ofF if ;i; ;S; uiðwÞ $
uið{w\i; S}Þ:

Intuitively, no agent can gain by unilaterally deviating
from a Nash equilibrium. This type of equilibrium is also
referred to as a weak Nash equilibrium since it is possible
that the agent receives equal utility from alternative
strategies. When no such alternative exists, we have a strict
Nash equilibrium:

Definition 2. w is a strict Nash equilibrium of F if ;i;
;S – wðiÞ; uiðwÞ . uið{w\i; S}Þ:

Eq. (1) is complicated because it accounts for the
calculation of the probability that slot si is free, starting from
a strategy profile. Although this definition of utility is
necessary for discussing Nash equilibria, in other parts of
the paper we will find it more convenient to take as given the
same distribution p for all agents, indicating the probability
of each slot being free. We can then specify an expression
for ai’s expected utility for choosing slot s:

uiðsÞ ¼ viðsÞ2
$

12 pðsÞ
%

m ð2Þ

2.3. Restrictions on the class of mechanisms

We now consider restrictions on the class of mechanisms
that could be used to solve the focused loading problem, not to
make the problem easier to solve, but in order to identify
solutions with desirable characteristics. First, we introduce a
restriction concerned with agents’ incentives to participate (as
discussed below, this condition is stronger than the standard
mechanism design requirement of individual rationality).
Next, we discuss restrictions that could arise from implemen-
tation considerations and the case of continuous pricing.

Definition 3. A mechanism F is participation-safe if and
only if m # vlð!sÞ:

We will consider only participation-safe mechanisms in
this paper; that is, we require that the fixed usage cost for the
network resource must never exceed the lower bound on any
agent’s valuation for his most-preferred slot. Intuitively, this
means that every agent will always be able to choose at least
one slot in which his payment will never exceed his

valuation, and hence that it will be rational for him to
participate regardless of how the mechanism assigns free
slots. Observe that participation-safety implies individual
rationality, because, regardless of Pi; agent ai can choose
slot !s and achieve a non-negative utility. Individual
rationality does depend on Pi; and thus is a weaker
condition.

We do not restrict the class of mechanisms in order to
simplify analysis. As it turns out, it is very easy to design
and analyze mechanisms that have a fixed cost exceeding all
agents’ valuations, and then reward agents only when they
behave as desired. Such mechanisms can have good
theoretical characteristics (such as optimality, defined
below) and can remain consistent with individual rationality
by assuring agents non-negative expected gain. Indeed, it
turns out that in what follows, everywhere we prove 1-
optimality or ðcþ 1Þ-optimality, we could prove optimality
or c-optimality, respectively, if we were not restricted to
participation-safe mechanisms. However, we believe that
such mechanisms would be considered unreasonable to
deploy in practice despite their theoretical benefits, because
they address the problem of focused loading by threatening
agents with unviable alternatives—slots whose expected
costs exceed agents’ valuations—rather than giving agents
positive incentives to behave as desired.

Because of the difficulty of implementing complex
protocols on a highly-loaded network resource, it is
worthwhile to consider various other restrictions on the
class of mechanisms. For example, it may or may not be
possible to reimburse agents after all agents have chosen a
slot, as opposed to doing so after each agent chooses. Also,
it may or may not be permissible for f to depend on what
slots agents chose, as this would require that information be
stored for each agent, and again that billing be deferred until
after all agents have selected slots. In some settings it might
not be reasonable for the network to give signals to agents;
in other cases, it would be possible to give signals but not to
record which signals were given to which agents. The
significance of the time, space and communication com-
plexity of the mechanism may also vary depending on the
setting. We discuss these and other trade-offs in Section 7.

Also, it might appear that more powerful mechanisms
could be designed if prices could be varied arbitrarily, as
opposed to our model in which slots must be priced at either
m or 0. In fact, since we assume that agents are risk-neutral,
agents will be indifferent between any slot priced on the
range ½0;m$ and the same slot made free with an appropriate
probability. Furthermore, m can be increased arbitrarily. In
the case of risk-averse agents, such ‘continuous pricing’
would be useful: our results throughout this paper hold for
risk-averse agents if and only if this sort of continuous
pricing scheme is used. We have chosen not to emphasize
continuous pricing because it would be likely to make
greater computational and communication demands on the
network; however, all our results are compatible with such a
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scheme, and furthermore our bounds on q and m (see, e.g.
Eqs. (7)–(9) may be dropped in this case.

2.4. Evaluating outcomes

The network has two aims: to balance the load caused by
the agents’ selection of slots and to collect as much revenue
as possible. We denote the network’s expected revenue
given a mechanism F and equilibrium w as E½RlF;w$: The
network collects a payment of m from each participating
agent except for those who receive free slots. Expected
revenue is given by:

E½RlF;w$ ¼
X

n

i¼1

X

t

s1¼1

…
X

t

sn¼1

!"

wð1Þðs1Þ…wðnÞðsnÞ
#

·

"

12 f ðs1;…; snÞiÞ
#

m

&

ð3Þ

We define g as the monetary value to the network of the
variance of load across the set of time slots. Lower variance
corresponds to a more even load and thus to a higher dollar
value; thus g must decrease strictly as variance increases.
We will say that load is balanced when g is maximized,
which corresponds to minimal variance. We define the
superlinear summation class of functions to be the set of
functions in which gðdÞ ¼ 2k

P

i hðdðiÞÞ; where h is super-
linear in dðiÞ and k is a constant that is used to indicate the
relative importance of load balancing to the network. Note
that this measure is only reasonable if we assume that each
agent consumes about the same amount of load. The
expected value of load balancing is given by:

E½glw$ ¼
X

d

gðdÞ Prob ðdlwÞ ð4Þ

Maximizing revenue and maximizing g are conflicting
goals, as it costs the network more to induce an agent to
choose slot !s than to choose slot !s: Indeed, note that revenue
is maximized in the original focused loading equilibrium
when all agents choose !s and ;i Pi ¼ 0: According to our
problem definition, agents are willing to distribute them-
selves this way, and thus this equilibrium can be achieved
without waiving any agents’ usage fees. In some systems
this could be a desirable outcome; however, we have
assumed that the mechanism designer would prefer at least
some balancing of the load. The network must therefore
trade off quality of load balancing against expected revenue;
the degree of trade-off desired may be specified through the
choice of k: Given definitions of the expected values R and
g, we can define z, the network operator’s evaluation of
equilibrium w of mechanism F :

zðF;wÞ ¼ E½RlF;w$ þ E½glw$ ð5Þ
It will be useful to define the best possible distribution of
agents given a free slot distribution that applies to all agents.
Imagine a mechanism Fall in which all strategy profiles are
in equilibrium, and Pi ¼ pðAiÞ: Intuitively, this is the best

distribution of agents for the mechanism, given the
constraint that the free slot distribution must be the same
for all agents.

Definition 4. A distribution d is ideal for pðsÞ if and only if
an equilibrium w which deterministically results in distri-
bution d maximizes zðFall;wÞ:

Note that this expression may not have a unique
maximum. We will denote an ideal distribution d as dp:

Next, we define the optimality of an equilibrium under a
mechanism. Essentially, an equilibrium of a given mech-
anism is optimal if there does not exist another equilibrium
of any other mechanism that yields a higher expected value
of z.

Definition 5. A mechanism-equilibrium pair ðF;wÞ is
optimal if and only if for all other pairs ðF0;w0Þ; zðF;wÞ $
zðF0;w0Þ; where n is held constant.

This definition of optimality is problematic when agents
have different valuation functions that are not known by the
network—the case we take up in Sections 5 and 6. An
optimal mechanism for this case would have to set each
agent’s expected payment to exactly his valuation for any
slot chosen, by constructing a different Pi for each agent.
For every set of agents there does exist a set of such
mechanisms. However, it is impossible to select such a
mechanism based on the information available; furthermore
such a mechanism will violate our restriction that it be
participation-safe, because an agent ai who chooses slot !s is
charged við!sÞ; which can be exceed vlð!sÞ: To overcome this
difficulty we provide an alternate notion of optimality that
bounds the average loss per agent as compared to an optimal
mechanism:

Definition 6. A mechanism–equilibrium pair ðF;wÞ is
c-optimal if and only if for all other pairs ðF0;w0Þ; zðF;wÞ þ
cn $ zðF0;w0Þ; where n is held constant and c . 0:

For convenience, we will also make use of the term [c-
]optimal to refer to equilibria alone, in cases where the
mechanism giving rise to the equilibrium is unambiguous.

Definition 7. An equilibrium w is [c-]optimal if w is an
equilibrium of mechanism F; and ðF;wÞ is [c-]optimal.

We call w0 where all agents choose the same slot a
focused loading equilibrium. We assume that g and v do not
take values that would cause w0 to be optimal. This
assumption is only required for our Proof of Theorem 2,
but it is a reasonable one for us to make since if w0 were
optimal, we would have no problem to solve in the first
place.
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3. Preselection mechanism

In this section we consider a simple mechanism,
designed to make agents indifferent between all time slots
despite their initial preferences. This mechanism will be
formally referred to as F1; and informally called ‘preselec-
tion’, since it decides which slots will be free before
observing the actions of the agents. This mechanism is
unrealistic in several ways, and we do not discuss it here in
order to propose that it should be used in practice. Indeed,
such a mechanism is an obvious first approach to the
problem of focused loading, and so it is important to
demonstrate its insufficiency. Furthermore, the exposition of
this mechanism will prove useful as a starting point for the
discussion of more sophisticated mechanisms.

F1 works as follows:

1. The network determines free slots by drawing from p.
(Thus, Pi ¼ pðAiÞ:)

2. Agents choose a slot.

3.1. Equilibria

We know from the definition of the problem that when
there is no chance that they will win a free slot agents prefer
slot !s to slot s: We can overcome this preference by biasing
pðsÞ: An agent’s expected utility is given by uiðsÞ ¼
vðsÞ2 ð12 pðsÞÞm: Recall that we assume vl ¼ vu until
Section 5; here we use (unsubscripted) v to denote the
valuation function that all agents share. We can make agents
indifferent between slots by requiring that all time slots will
have the same expected utility for agents: that is, that the
expected utility derived from each time slot is equal to the
average expected utility over all time slots. This is
expressed by the equation vðsÞ2 ð12 pðsÞÞm ¼
1=t

P

i ðvðiÞ2 ð12 pðiÞÞmÞ: Algebraic manipulation and
q ¼ P

s pðsÞ give us:

ppðsÞ ¼
1
t

$

qmþP

ivðiÞ
%

2 vðsÞ
m

ð6Þ

Observe that since free slots are free for all agents, q
represents the expected number of free slots. Because we
will find this probability distribution useful throughout the
paper, we have given it a name: pp:

If free slots are awarded according to pp; it is a weak
Nash equilibrium for all agents to select a slot uniformly at
random. We will call this equilibrium w1: Consider the case
where all other agents play according to w1; and one
remaining agent ai must decide his strategy. Since the
choice of any slot entails equal utility on expectation, ai can
do no better than to randomly pick a slot. Again,w1 is only a
weak equilibrium: indeed, there is no strategy ai could
follow that would make him worse off.

We now make several remarks about the preselection
mechanism. First, note that the above analysis assumes that

ai is risk-neutral. If ai is risk-averse, he will prefer slot !s;
since it gives the largest fixed payment, vð!sÞ: Second, this
mechanism is not susceptible to collusion, because each
agent is indifferent between all pure strategies regardless of
the actions of other agents. Finally, since all strategy
profiles are weak equilibria under the preselection mechan-
ism, it would be reasonable to ask why we pay special
attention to w1: It may be argued that randomization is a
‘natural’ response to indifference, and so we will consider
this as a primary case in the next subsection; however, none
of our results depend on the assumption that agents will
choose this strategy.

3.2. Bounds on q and m

It appears that deviation from w1 will never be profitable
for agents, since we have guaranteed that all slots provide
the same expected utility. Consider the most profitable
deviation, from s to !s: We have claimed that the utility of
both slots is the same: vð!sÞ2 ð12 pð!sÞÞm ¼ vðsÞ2 ð12
pðsÞÞm: However if qm is too small or too large, pðsÞ2
pð!sÞ . 1 will hold. Since we want to interpret pðsÞ and pð!sÞ
as probability measures, we must add the constraints pð!sÞ $
0 and pðsÞ # 1: Without these constraints, the equation for
pp still makes sense if we consider continuous pricing rather
than our default model of free/non-free slots; p . 1
corresponds to an expected slot cost of less than zero
(paying agents to choose a slot) while p , 0 corresponds to
an expected slot cost of more than m. Substituting pð!sÞ $ 0
into Eq. (6) and rearranging, we get:

q $
tvð!sÞ2

P

ivðiÞ
m

ð7Þ

For the second condition, we require that pðsÞ # 1; which
gives us:

q #
tðvðsÞ þ mÞ2P

ivðiÞ
m

ð8Þ

We must also ensure that a value of q exists for a given m
and v. Intersecting the two bounds and simplifying, we get:

m $ vð!sÞ2 vðsÞ ð9Þ

Indeed, if m , vð!sÞ2 vðsÞ then if an agent were certain to
win a free slot in s and guaranteed never to win a free slot in
!s; he would still prefer !s to s:

3.3. Maximizing revenue

Eq. (3) gave a general expression for E½RlF; d$:
However, under equilibrium w1 all agents randomly select
a slot, which allows us to write an expression for
E½RlF1;w1$ that does not include a summation. In w1

expected revenue is given by the percentage of non-free
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slots times cost per slot times number of agents:

E½RlF1;w1$ ¼ 12
q

t

" #

mn ð10Þ

Increasing m will increase expected revenue; however,
recall that we require that the mechanism be participation-
safe, and hence that m # vlð!sÞ: Regardless of the particular
value of m, reducing q (the expected number of free slots)
will increase expected revenue.

We will now show how the network can maximize
revenue. We define vavg as ð1=tÞPs vðsÞ: The requirement
that an agent’s utility for slot s must be greater than or equal
to zero—i.e. that vðsÞ2 ð12 pðsÞÞm $ 0—can be rewritten,
substituting in pp; as vavg 2 ð12 q=tÞm $ 0: The seller’s
revenue will be maximized when all agents get zero utility.
Thus we must have:

12
q

t

" #

m ¼ vavg ð11Þ

We substitute in the lower bound for q from Eq. (7): i.e.
q ¼ 1=mðtvð!sÞ2P

i vðiÞÞ: Rearranging for m, we get m ¼
vð!sÞ: This satisfies Eq. (9) and ensures that the mechanism is
participation-safe, so we are done.

This is intuitive because when we minimize q we set
pð!sÞ ¼ 0: We know that agents are indifferent between all
slots, and so agents will be willing to choose any slot when
the cost of !s does not exceed their valuation. We thus set
m ¼ vð!sÞ and (plugging m into the lower bound on q ) q ¼
tð12 vavg=vð!sÞ:

We have shown that each agent can be made to pay an
expected amount exactly equal to his utility for any slot he
chooses. However,w1 is not guaranteed to achieve an ideal
distribution of agents, and therefore w1 is not optimal. The
easiest way to show this is to present another equilibrium of
the preselection mechanism that is optimal.

3.4. Optimal equilibria

Consider an equilibrium in which each of the agents
deterministically chooses one slot. (Recall that any strategy
is rational under F1; and thus that any set of strategies is a
weak equilibrium.) In one such equilibrium, agents
deterministically choose slots so that the distribution of all
agents is ideal; we will call this equilibrium wp

1: Unsurpris-
ingly, we can show:

Theorem 1. ðF1;w
p
1Þ is optimal.

Proof. Please see Appendix A.

Remark. Recall that a mechanism–equilibrium pair is
optimal when there does not exist another mechanism that
has an equilibrium giving rise to a distribution that yields a
higher value according to the evaluation function z.

The equilibrium wp
1 is optimal, but it is extremely unlikely

that it would arise through the choices of real agents. As

mentioned above, the fact that agents are indifferent
between all slots means that every combination of agent
strategies is a weak equilibrium. In fact, the preselection
mechanism gives rise to many equilibria that minimize gðdÞ:
For example, the case in which all agents choose slot !s is a
weak equilibrium. Since discouraging focused loading is the
purpose of the preselection mechanism, it is undesirable to
find that such behavior remains an equilibrium! However,
this drawback is inherent to the setting as we have modelled
it so far; a preselection mechanism can only yield weak
equilibria or focused loading equilibria.

Theorem 2. When agents have identical utility functions
and no signals are given to agents and the network
preselects p before agents move, all equilibria are either
weak or focused loading.

Proof. Please see Appendix A.

Remark. Intuitively, this proof shows that under the
conditions of the preselection mechanism any incentive
given to one agent is given to all the agents, and that the
mechanism designer must therefore choose between
encouraging all agents to choose the same slot and making
all agents indifferent between a set of slots.

In fact, we can show another negative result: there does
not exist an optimal mechanism that is participation-safe
and that gives rise to a strict equilibrium.

Theorem 3. There does not exist an optimal ðF;wÞ for
which w is a strict equilibrium and m # vð!sÞ:

Proof. Please see Appendix A.

Theorem 3 shows that strict, optimal equilibria do not
exist for participation-safe mechanisms. However, if we
allow networks with different characteristics than those we
allowed in this section, we can see that it is possible to get
close to a strict, optimal equilibrium when agents have
identical utility functions and no signals are given to agents,
and p depends on the agents’ actions. Intuitively, consider a
mechanism that sets p ¼ ð1þ 1Þpp if agents achieve an
ideal distribution, and p ¼ 0 otherwise. Further, consider a
set of (pure) agent strategies where agents happen to
distribute themselves according to dp for ppðsÞ: This is an
equilibrium because agents are penalized for deviating.
Intuitively, it is nearly optimal because agents achieve an
ideal distribution with respect to the mechanism, and the
probability of awarding free slots is arbitrarily close to the
probability from the optimal mechanism–equilibrium pair
described in Theorem 1. However, it would be extremely
difficult for agents to coordinate to this equilibrium in real
play. In the Section 4 we will show how the use of a non-
binding coordination phase before the selection of slots can
help agents to reach strict, nearly-optimal equilibria.
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4. Bulletin board system mechanism

In this section we assume that agents are given a bulletin
board system: a forum in which all communications are
visible to all agents and the identity of agents is associated
with their transmissions. For simplicity, we allow a very
limited form of communication: agents indicate the slot that
they intend to choose. We assume that agents do not all
indicate slots at the same time; rather, they indicate
sequentially during the first phase. Let djðsÞ denote the
number of agents who have indicated that they will choose
slot s after a total of j agents have posted to the bulletin
board. dp will again be the ideal distribution for ppðsÞ:
Agents’ communications through the bulletin board are
cheap talk: a technical term that indicates that these
communications are not binding in any way. Even so, the
bulletin board can help agents to coordinate on desirable
equilibria. Mechanism F2 follows:

1. The network picks ‘potentially free’4 slots according to
ð1þ 1Þpp:

2. Agents communicate through the bulletin board.
3. Agents choose time slots.
4. If d ¼ dp; then ‘potentially free’ slots are made to be

free. That is, Pi ¼ ppðAiÞ: Otherwise, all agents are made
to pay for their slots (Pi ¼ 0).

4.1. Equilibria

A strict equilibrium inF2; which we call w2; is for the ith
agent to indicate on the bulletin board a slot s such that
di21ðsÞ , dpi ðsÞ; and ultimately to choose that slot s.
Consider the case where all other agents follow w2 and
agent ai must decide his strategy. If ai cooperates and
chooses slot s then the distribution of agents will be dp and
so ai will receive an expected utility of vðsÞ2 ð12 ð1þ
1ÞppðsÞÞm: If ai defects to slot s0; one of two cases will result.
In the first case, agents indicating their choices after ai will
compensate for his deviation by choosing different slots;
thus ai will receive the same expected utility as he would
have received if he had not deviated. In the second case, ai
will be late enough in the sequence of agents indicating their
choices that the agents who indicate after him will be too
few to bring the distribution back to dp: In this case ai will
receive an expected utility of vðs0Þ2 m: The key point is that
ai does not know the total number of agents, and so he must
assign non-zero probability to the second case, regardless of
the number of agents who have already indicated.
Furthermore, we must show that ai will choose the slot he
indicated on the bulletin board even though his selection
was not binding. If all other agents follow w2 then there is
clearly no incentive for ai to choose a different slot than he
indicated, because that would certainly prevent d ¼ dp and

reduce his payoff. Therefore w2 is strict as long as vðsÞ þ
ð1þ 1ÞppðsÞm . vðs0Þ for all s; s0 such that 1 # s; s0 # t:
Simplifying, we derive the conditions similar to those
described in Section 3.

tvð!sÞ2
X

i

vðiÞ

m
# q #

t v s
' (

þ m

1þ 1

" #

2
X

i

vðiÞ

m
ð12Þ

Again, we must intersect the two bounds to get a bound on
m, which we combine with the constraint on participation-
safe mechanisms:

ð1þ 1Þ
$

vð!sÞ2 vðsÞ
%

# m # vð!sÞ ð13Þ

This equilibrium relies on the fact that each agent can
choose a slot as if he were the last agent and achieve the
distribution dp; even if all agents before him chose slots in
this same way. We prove that this greedy approach works in
Section 4.2.

An analysis of the possibility of collusion in the bulletin
board mechanism is not appropriate, because agents are
already encouraged to coordinate with each other. Any
agent or cartel of agents who deviated would hurt
themselves along with all other agents.

It is well known that any game having an equilibrium
arising from cheap talk coordination has other equilibria in
which agents ignore the cheap talk [2]. The bulletin board
mechanism is no exception. All agents choosing !s (focused
loading) is an equilibrium when the resulting d could not be
transformed into dp by one agent choosing a different slot.
Note, however, that w2 Pareto-dominates all equilibria where
the cheap talk is ignored and a different distribution results.

4.2. Greedy assignment of slots

In w2 each agent chooses a slot that would result in an
optimal distribution if he were the last agent to post to the
bulletin board. For this reason it is important to show that we
can assign slots to agents greedily, with the guarantee of
achieving the ideal distribution for whatever number of
agents eventually participate.

We must introduce new notation to describe changes as
each agent chooses a slot in turn. (Readers who do not
intend to read the Proof for Lemma 1 can safely skip to
Section 4.3. First, we will subscript d to indicate the total
number of agents in the distribution, so that we can describe
the distributions that result after only a subset of agents have
chosen slots. By dpi we denote the optimal distribution of i
agents. Second, we define Dðdi; sÞ to be the increase in z if
one agent is added to slot s, relative to di: Define the
decomposition Dðdi; sÞ ¼ DEðdi; sÞ þ Dgðdi; sÞ; where
DEðdi; sÞ is the increase in E½RlF; di$; and Dgðdi; sÞ is the
increase in gðdiÞ: In equilibrium DEðdi; sÞ does not depend
on di; but only on pðsÞ and m. (We assume here that p does

4 We redefine q as the expected number of ‘potentially free’ slots; the

same redefinition is required for Section 6.
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not depend on dpi :) Two properties follow from the fact that
g is superlinear summation:

1. Dgðdi; sÞ is strictly monotonically decreasing in diðsÞ
2. Dgðdi; sÞ ¼ Dgðd0j; sÞ for all distributions d0j where d0jðsÞ ¼

diðsÞ

Since DE does not depend on di; D also has these
properties.

We now describe a function g : let gðiÞ represent the slot
number that will be assigned to ai; where ai is the ith agent
to register. Let dgi ðsÞ be the number of times s occurs in
{gð1Þ;…; gðiÞ}: We note that ;s Dðdg0 ðsÞÞ ¼ 0: We can now
inductively define g : gðiÞ ¼ arg maxsDðdgi21ðsÞÞ:

Lemma 1. ;i dgi is ideal under F2:

Proof. Please see Appendix A.

Remark. This Lemma demonstrates that greedy assignment
of slots to agents leads to an ideal distribution when we
assign slots according to g as defined above.

4.3. 1-Optimality

Although Theorem 3 showed that the bulletin board
mechanism cannot be optimal, it turns out that it can be
made arbitrarily close to optimal. We now show that there
exists no other equilibrium of any other mechanism which
will yield a value of z larger than zðF2;w2Þ þ 1 for
arbitrarily small 1:

Theorem 4. ðF2;w2Þ is 1-optimal.

Proof. Please see Appendix A.

Remark. This is a key result, because it shows that we can
get arbitrarily close to an optimal equilibrium with a
mechanism that could actually be used in practice.
Furthermore, the fact that the equilibrium is strict is
encouraging, because it means that an agent could not
reduce z by deviating from w2 without also reducing his own
utility.

4.4. Implementation considerations

We point out that 1-optimality means that the mechanism
can lose 1 per agent; in practice, 1 would have to be large
enough to overcome agents’ indifference between nearly-
identical payoffs and encourage them to coordinate.

Although we speak about agent strategies throughout this
paper, it is worthwhile to note that in a real system these
strategies would probably be implemented in software that
most users would not be able to change easily. Of course,

this is not an argument against equilibrium analysis or the
careful design of economic mechanisms. If agents could
gain by deviating, there would be an incentive for users to
change their software, and once software has been modified
it is easily redistributed. However, the fact that the
mechanism designer could in many cases distribute client
software is significant because it can act as a coordination
device: agents’ common knowledge of using the same
software could help them to coordinate to an equilibrium the
mechanism designer has preselected. Although the bulletin
board mechanism gives rise to non-1-optimal equilibria,
these might be avoided if client software helped agents to
coordinate to w2:

5. Collective reward mechanism

We now consider the more general and realistic case
where each agent may have a different vi; bounded by v

l and
vu; as described in Section 2. Recall that since the network
does not know each agent’s v, we can no longer tune m, q,
and p to extract the maximum amount of revenue from each
agent.

In this section we also allow the network to give signals
to agents, to allow the agents to coordinate to a desirable
equilibrium; we also show how collective reward may be
used to prevent agents from deviating. We define mechan-
ism F3 as follows:

1. Each agent indicates that he will participate.
2. The network gives a signal to each agent from {1;…; t}:
3. Agents choose time slots.
4. The network determines whether each slot will

retroactively be made free.

In this mechanism, the chance that slot s will be free,
pðsÞ; depends on the number of agents who chose slot s, dðsÞ:
Let count(s ) be the number of agents who were given the
signal s. Define dþðsÞ ¼ dðsÞ2 countðsÞ: For the collective
reward mechanism F3 :

pðsÞ ¼
pbðsÞ if dþðsÞ # 0

0 if dþðsÞ . 0

(

ð14Þ

Thus Pi ¼ pbðAiÞ if dþðsÞ # 0 and Pi ¼ 0 otherwise, where
pbð·Þ is defined below.

We will assign signals to agents so that countðsÞ ¼ dpðsÞ;
where dp is now ideal for pbðsÞ: The idea of this mechanism
is that agents who choose the slot s to which they are
assigned will get that slot free with probability pbðsÞ; and
agents who deviate to another slot will pay m. The pðsÞ used
for this mechanism will thus differ from pðsÞ for the previous
two mechanisms. The intuitive reason for the change is that
in F1 and F2 we used p to make agents indifferent between
all slots. Now, however, we use p so that agents will not
deviate from an assignment to a particular slot. We will
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construct pb so that each agent ai will choose his assigned
slot even when ai has the lowest possible valuation for the
slot corresponding to his signal, and the highest possible
valuation for !s; the most profitable slot to which he could
deviate. When an agent is assigned a slot s – !s; this
condition can be formalized as:

vlðsÞ2 ð12 pbðsÞÞm ¼ vuð!sÞ2 mþ 1 ð15Þ
Here as before 1 is a small, positive value used to make
agents strictly prefer the slot to which they are assigned. It
can be interpreted as an offset to vu; giving us a strict
upper bound on agents’ utilities. If we make an agent with
this impossibly high valuation for slot !s indifferent
between his assigned slot and !s; then any agent who
actually plays the game must prefer his assigned slot. We
can now derive pb :

pbðsÞ ¼
vuð!sÞ2 vlðsÞ þ 1

m
if s – !s

0 if s ¼ !s

8

>

<

>

:

ð16Þ

The case of s ¼ !s is considered separately because an
agent assigned to this slot has no incentive to deviate.
Note that if viðsÞ ¼ við!sÞ is possible for an s – !s; then we
would have to change the definition of pb to maintain a
strict equilibrium, giving 10 probability of awarding !s free.

We now need to define bounds on m. The condition that
pbðsÞ # 1 can be rewritten, combined with the requirement
that the mechanism be participation-safe, as:

vuð!sÞ2 vlðsÞ þ 1 # m # vlð!sÞ ð17Þ
For F3 q is defined as:

q ¼
X

i–!s

vuð!sÞ2 vlðiÞ þ 1

m

 !

ð18Þ

To maximize expected revenue, the collective reward
mechanism sets m to its upper bound of vlð!sÞ:

5.1. Equilibria

An equilibrium w3 is for each agent aj to select the slot
corresponding to his signal.5 Consider the case where all
other agents follow this strategy, and one remaining agent ai
decides his strategy. If agent ai selects slot s as above, then
his expected utility is uiðsÞ ¼ viðsÞ2 ð12 pbðsÞÞm: Deviat-
ing to even the best slot only gives him uið!sÞ ¼ við!sÞ2 m:
We have defined pb so that in this case ai strictly prefers
slot s.

There are no equilibria of the collective reward
mechanism for which d – dp: Consider any distribution of
agents such that d – dp: There must be some s1 such that
dþðs1Þ , 0; and some other s2 such that dþðs2Þ . 0: An
agent in s2 thus has no chance of a free slot, and he receives
utility of at most við!sÞ2 m: If he switches to s1; then his
probability of receiving a free slot becomes pbðs1Þ because
dþðs1Þ # 0: Since pb is constructed so that this agent
receives more utility, on expectation, than við!sÞ2 m; he has
incentive to move to slot s1: However, there do exist
equilibria in which agents do not select slots corresponding
to the signals they receive. For example, consider the case
where agent ai deterministically selects the slot sðnþ 12
iÞ: (Note that this could occur even if agent ai did not know
what signal agent anþ12i receives.) In this case the
distribution of agents is dp; and so the analysis above
demonstrates that all agents have a disincentive to deviate.
Another example is where all agents select the slot
corresponding to their signals except where agent ai chooses
slot sðjÞ and agent aj chooses slot sðiÞ:

Harmful collusion is not possible under the collective
reward mechanism. A single agent who deviates from w3

can harm other agents by denying them a chance at a free
slot. However, no set of agents is able to improve other
agents’ chance of getting a free slot, and so there is no way
that a cartel of agents could benefit from colluding.

Theorem 5. ðF3;w3Þ is c-optimal for c ¼ maxs ðvuðsÞ2
vlðsÞÞ þ 1:

Proof. Please see Appendix A.

Remark. Because it depends on bounds rather than on
agents’ actual valuations, w3 is not optimal. However,
this theorem shows that we can prove a bound on the
optimality of w3; showing that the network can lose no
more than maxs ðvuðsÞ2 vlðsÞÞ þ 1 in revenue from each
agent.

It follows from this statement that if we revert back to the
setting from Sections 3 and 4 (where vuðsÞ ¼ vlðsÞ), the
network will lose only 1 in revenue from each agent. It is
only the change to bounds on valuation functions that causes
the weaker claims on optimality for this mechanism and the
next.

Corollary 1. ðF3;w3Þ is 1-optimal for vl ¼ vu:

Proof. This follows directly from the preceding Theorem 5
because vl ¼ vu implies that c ¼ 1: A

5.2. Implementation considerations

We observe that it may involve less overhead to assign
single, persistent signals to agents if the game will be

5 This note is intended for readers familiar with game theory. Consider

the space of all functions H : N! {1;…; t} mapping from agent names to
suggested slots. Let Prob be a probability distribution over all functions

h [ H that give rise to the agent distribution dp: If signals are assigned

based on an h drawn from Prob then w3 can easily be formulated as a

correlated equilibrium. However, for ease of exposition and to emphasize
the sequential assignment of agent signals for implementation reasons, we

do not make further use of this formulation.
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repeated many times. In this case, the collective reward
mechanism may be used as above but without the signalling
phase, and with each agent aj who did not participate
counted by dþ as having participated in slot sðjÞ: This
allows w3 to hold in the case where signals are not assigned
repeatedly with the penalty that w3 will only be c-optimal
for c ¼ maxs ðvuðsÞ2 vlðsÞÞ þ 1 when all agents participate.

6. Discriminatory mechanism

A disadvantage of the bulletin board mechanism is that it
reimburses some agents at the end of the game rather than
simply waiving their fees. This requires tracking individual
agents’ behavior and executing more financial transactions,
both of which could be costly to the network. Also, the
bulletin board mechanism has non-optimal equilibria.
Finally, irrational agents can harm others in both the
bulletin board and collective reward mechanisms. These
problems are eliminated by the discriminatory mechanism,
F4; which makes use of agent signals and also discriminates
by offering different free slots to different agents (although,
as we will see in Section 6.2 it makes new demands of the
network that will sometimes be undesirable):

1. Each agent indicates that he will participate.
2. The network assigns signals to agents from {1;…; t}

according to the dp that is ideal for pb:
3. The network chooses ‘potentially free’ slots according to

pb:
4. Each agent indicates what slot he selects.
5. The network checks only those agents in each slot si that

was picked to be ‘potentially free’ (for all agents who
chose other slots, Pi ¼ 0). If agent aj in slot si has
sðajÞ ¼ si then Pj ¼ pbðAjÞ; otherwise Pj ¼ 0:

6.1. Equilibria

Agent ai’s dominant strategy is to choose the slot
corresponding to his signal. The analysis exactly follows
that for w3; we call this equilibrium w4: The only difference
is that an agent’s expected utility does not depend on other
agents’ strategies, and hence w4 is an equilibrium in
dominant strategies. A consequence is that w4 is unique.
By exactly the same argument that was given in Proof of
Theorem 5, ðF4;w4Þ is c-optimal for c ¼ maxs ðvuðsÞ2
vlðsÞÞ þ 1: The same corollary also holds, and so ðF4;w4Þ is
1-optimal for the special case where vu ¼ vl:

It may seem disappointing from a game-theoretic point
of view that neither strategy nor even payoffs under the
discriminatory mechanism depend on the actions of other
agents. However, this may be seen as an advantage of the
discriminatory mechanism, since irrational agents are not
able to harm others.

6.2. Implementation considerations

As compared to the collective reward mechanism, the
discriminatory mechanism makes two additional demands
of the network. First, the network must keep track of the
signals that are given to agents in the second step, so that
they can be verified in the fifth step. In collective reward the
system does not need any sort of user accounts; rather, it
greedily assigns signals to agents, recording only the
number of agents who received each signal.

Second, the discriminatory mechanism requires the
network to verify user identities. In contrast, the collective
reward mechanism simply counts the number of agents who
chose each slot. Under the discriminatory mechanism the
network only has to check the identity of agents from q slots
on expectation, since agents who choose a slot that is not
potentially free do not have to be checked. It would be
possible for the network to assume that all agents in possibly
free slots have played according to the dominant strategy
and to randomly check only a subset of the agents in these
slots, but this would reduce the penalty for defection and
thus sacrifice c-optimality.

In order to permit this verification, the mechanism
can assign signals to agents in two different ways. The
obvious option is to assign signals to agents as
described in Theorem 1, to store the numbers in some
sort of user account requiring login and then to verify
that agents selected the appropriate slot by requiring
them to log in again before using the network resource.
This approach requires further data storage by the
mechanism, but the resulting d will be ideal and thus
the mechanism will be c-optimal as argued above. If
this data storage is not desirable, a deterministic
function may be used to calculate the slot that may
be offered free to a given agent, and the same function
may be used to determine whether each agent has
selected the appropriate slot. For example, a hash of the
agent’s IP address—or of any other identifying infor-
mation from the packet header—could be used. This
approach has the disadvantage that it sacrifices optim-
ality and for steps 2 and 5 in the mechanism, but the
advantage that no information about identifying indi-
vidual agents must be stored by the mechanism.6

Indeed, if the function itself is publicized then the
first two steps may be omitted from the mechanism,
requiring only one interaction between agents and the
network.

6 Another disadvantage is that an agent could register from one computer,
receive a slot assignment, use the network from a second computer and be

denied a chance for a free slot because the second computer’s IP did not

hash to the same signal. This could be addressed by requiring agents to use

the network from the computer from which they registered, and permitting
them to register again if they change their mind about which machine they

want to use.
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7. Comparison of different mechanisms

Table 1 summarizes and contrasts the mechanisms
discussed in this paper. For convenience, we have divided
the display into three parts: (i) a list of mechanism
characteristics, (ii) a comparison of the outcomes of the
mechanisms, and (iii) costs associated with executing the
mechanisms.

8. Conclusion

Focused loading is a predictable network congestion
problem. It is caused by a preference users have for
transacting with a network resource at a specific time when
the network charges transactions equally over a period of
time. For example, focused loading frequently causes web
servers to crash. In this paper we have taken an economic
approach to de-focusing load by devising incentive schemes
for encouraging users to desynchronize their transaction
times. While general congestion-management techniques
may be applicable to this problem, the use of a specialized
solution is attractive because additional information about
the problem can be used to increase revenue and reduce
demands on the network.

We present a theoretical model of the problem, and
discuss four mechanisms that induce selfish agents to
smooth out their resource demands by probabilistically
waiving the cost of resource usage. We show one very
simple mechanism that achieves a weak load-balancing
equilibrium, and three other, somewhat more complex
mechanisms that balance load in strict equilibria or
dominant strategies. Two of our mechanisms concern
the case where all agents have the same valuations for
different time slots, and two generalize to the case
where the mechanism knows only bounds on agent

valuations. We prove optimality and 1-optimality of the
revenue/load balancing trade-off in the first case, and a
bound on the optimality of this trade-off in the second
case.

In future work, we plan to apply the methods proposed in
this paper to de-focus the load at web servers operating
under transaction deadlines.
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Appendix A. Proofs of theorems

Theorem 1. ðF1;w
p
1Þ is optimal.

Proof. Let E½RilF;w$ be the expected revenue extracted
from agent ai; given mechanism F and equilibrium w: First,
we prove by contradiction that F1 yields at least as large a z
as any other F; both given the same equilibrium of the
respective mechanisms. Assume that there exists a pair (F;
w) such that zðF;wÞ . zðF1;wÞ: Since the equilibrium is
constant, we can expand z on both sides and simplify to get
E½RlF;w$ . E½RlF1;w$; which implies E½RilF;w$ .
E½RilF1;w$ for at least one agent ai: F1 sets values of p,
q and m so that for all slots agent ai’s expected utility is
vðsÞ2 E½RilF1;w$ ¼ 0: Thus for F we have ;s uiðsÞ , 0;
implying that F is non-participation-safe, a contradiction.
Second, we consider the case where F and F1 give rise
to different equilibria. As described above, under wp

1

agents deterministically distribute themselves so as to give rise
to the distribution dp: Recall that dp is an ideal distribution:
;w ðzðF1;w

p
1Þ $ zðF1;wÞÞ: Thus, ;F;wzðF1;w

p
1Þ $

zðF1;wÞ $ zðF;wÞ: A

Table 1

Comparison of F1,F2,F3,F4

F1: Preselection F2: Bulletin board F3: Collective reward F4: Discriminatory

Earliest possible free slot selection Before any time slots After all time slots After each time slot After each slot time

Agent signals No No Yes Yes

The network must store agent signals No No No Yes, or hash IP
Agents may have different v functions No No Yes Yes

Time required for coordination phase None Substantial Negligible Negligible

Type of equilibrium or strategy Weak equilibrium Strict equilibrium Strict equilibrium Dominant strategy

Non-optimal equilibria exist Yes Yes No No

Revenue increases if agents deviate No Yes Yes Yes
Harmful collusion No No No No

Irrational actions harm other agents No actions are irrational Yes Yes No

Time cost after coordination phase OðnÞ OðnÞ OðnÞ OðnÞ
Storage cost OðqÞ

(free slots)

OðtÞ
(d )

OðnÞ
(moves)

OðnÞ
(signals, identities)

Communication cost OðnÞ OðntÞ OðnÞ OðnÞ
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Theorem 2. When agents have identical utility functions
and no signals are given to agents and the network
preselects p before agents move, all equilibria are either
weak or focused loading.

Proof. Consider two agents ai and aj; without restriction.
The network has only three choices with respect to ai’s
preferences:

1. ai strictly prefers some slot sk to every other slot.
However, every other agent aj has the same preference.
Therefore, no agents will choose any other slot. This is a
strict equilibrium, but it is also a focused loading
equilibrium.

2. ai will (non-strictly) prefer some slot sk to all other slots:
he will strictly prefer sk to sl; and will be indifferent
between sk and at least one other slot. Thus no agents will
choose slot sl; and g will not be minimized. Any set of
mixed strategies over slots between which agents are
indifferent will constitute a weak equilibrium.

3. ai is indifferent between all pairs of slots sk and sl: In this
case ai receives the same payment regardless of his
action, so randomizing uniformly over all the slots is not
a dominated strategy. Indeed, randomization is a weak,
load-balancing equilibrium, as shown above.

The only strict equilibrium is a focused loading equilibrium;
all other equilibria are weak. A

Theorem 3. There does not exist an optimal ðF;wÞ for
which w is a strict equilibrium and m # vð!sÞ:

Proof. We will prove this statement by contradiction.
Assume that there exists an optimal ðF;wÞ in which w is a
strict equilibrium. Since w is a strict equilibrium, the
difference (call it x ) between expected utility from slot s and
the highest expected utility of any other slot must be
positive. By the assumption that m # vð!sÞ; deviation to !s
would result in no less than 0 utility. Thus by strictness of w;
agents in slots s – !s have positive expected utility of x. If we
create F0 by altering Pi so that the expected utility of s is
decreased by x, then the revenue is increased, and it is still
an equilibrium (albeit weak) for ai to select slot s. The fact
that revenue is higher in ðF0;wÞ than ðF;wÞ but that both
give rise to the same distribution contradicts the claim that
ðF;wÞ is optimal. A

Lemma 1. ;i dgi is ideal under F2:

Proof. Define di $ d0j as ;s diðsÞ $ d0jðsÞ:We will prove the
following statement that is stronger than the theorem:
;j; i $ j; there exists an ideal distribution dpi such that dpi $
dgj :

We will first prove this statement by induction on j. The
base case, where j ¼ 0; trivially holds because ;s dg0 ðsÞ ¼ 0:
For the inductive step, assume that there exists a dpi for all

i $ j such that dpi $ dgj ; in order to prove that there exists a
dpi for all i $ jþ 1 such that dpi $ dgjþ1: From the inductive
assumption we know that there exists a dpi $ dgj for each
i $ jþ 1: Let sk ¼ gðjþ 1Þ :hence sk ¼ arg maxsDðdgj ; sÞ:
We now prove that there exists an ideal distribution d0i

p

consistent with this greedy choice. If dpi ðskÞ $ dgj ðskÞ þ 1;
then d0ip ¼ dpi : Otherwise, d

p
i ðskÞ ¼ dgj ðskÞ: Consider a slot sl

where dpi ðslÞ $ dgj ðslÞ þ 1: Let Yðd; s; cÞ be distribution d
but with c agents added to slot s. Let d0 ¼ Yðdpi ; sl;21Þ; and
let d00 ¼ Yðd0; sk; 1Þ: We know from the first property of D
that ;s ðDðd0; sÞ # Dðdgj ; sÞ; since d0 $ dgj : Similarly, from
the second property of D we know that Dðd0; skÞ ¼ Dðdgj ; skÞ;
since d0ðskÞ ¼ dgj ðskÞ: Therefore, s ¼ sk maximizes Dðd0; sÞ:
This implies that zðF; d00Þ $ zðF;Yðd0; sl; 1ÞÞ: Since
Yðd0; sl; 1Þ ¼ dpi is ideal, d00 must also be ideal. Since d00 $
dgjþ1; we have proven the inductive step. A

Theorem 4. ðF2;w2Þ is 1-optimal.

Proof. First, we prove by contradiction that F2 yields z that
is within n1 of any other F; both given the same
equilibrium. Assume that there exists a pair (F; w) such
that zðF;wÞ . zðF2;wÞ þ n1: Since the equilibrium is the
same for both mechanisms, we can expand z on both sides
and simplify to get E½RlF;w$ . E½RlF2;w$ þ n1; which
implies E½RilF;w$ . E½RilF2;w$ þ 1 for at least one agent
ai:F2 sets values of p, q and m so that for all slots agent ai’s
expected utility is vðsÞ2 E½RilF2;w$ ¼ 1: Thus for F we
have ;s uiðsÞ , 0; implying that F is non-participation-
safe, a contradiction.

Second, we now consider the case where F and F2 have
different equilibria. As shown above in Lemma 1, the ideal
distribution dp is achieved by ðF2;w2Þ; hence
;F; zðF2;w2Þ $ zðF2;wÞ $ zðF;wÞ2 n1: A

Theorem 5. ðF3;w3Þ is c-optimal for c ¼ maxs ðvuðsÞ2
vlðsÞÞ þ 1:

Proof. Define vlþc21ðsÞ ¼ vlðsÞ þ c2 1 : an upper bound on
vu and thus on all possible v functions for agents. We now
define variants of F3 based on different agent v functions:
Fa

3 when agents have different, arbitrary v functions, andF
l
3

and Flþc21
3 for the cases when all agents’ functions are vl

and vlþc21; respectively. In each variant we assume that the
network has full knowledge of agents’ valuations and can
set different p’s for each agent. Let da; dl; and dlþc21 be the
corresponding ideal distributions arising from w3 in their
respective mechanisms. The revenue extracted from each
agent in equilibrium of Fa

3; F
l
3 or F

lþc21
3 is:

ð12 pðsÞÞm ¼ ð12 vð!sÞ2 vðsÞ þ 1

vð!sÞ Þvð!sÞ ¼ vðsÞ2 1:

We also make the change that each of these variants of F3

sets 1 ¼ 0 when it determines pb: This has the consequence
that equilibrium w3 still holds but is no longer strict. Each
variant will then extract the full vðsÞ from each agent in w3:
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Each of these mechanism–equilibrium pairs is optimal,
following an argument analogous to the one given in the
Proof of Theorem 1 (not given here): the mechanism makes
each agent pay exactly his valuation, and achieves an ideal
distribution. Thus, for any set of arbitrary v functions that
F3 encounters, zðFa

3;w3Þ represents the optimal evaluation.
We now bound how far F3 can be from this amount.

By definition, zðFl
3;w3Þ ¼ gðdlÞ þP

i v
lðsiÞ: We know

that dlþc21 ¼ dl because vlþc21 differs only by a constant
from vl at each slot. Thus, zðFlþc21

3 ;w3Þ ¼ zðFlþc21
3 ;w3Þ ¼

gðdlÞ þP

i v
lþc21ðsiÞ ¼ gðdlÞ þP

i v
lðsiÞ þ ðc2 1Þn: This

implies that zðFl
3;w3Þ þ ðc2 1Þn ¼ zðFlþc21

3 ;w3Þ; it
remains to show that zðFlþc21

3 ;w3Þ $ zðFa
3;w3Þ: Note that

zðFlþc21
3 ;w3Þ $ zðFlþc21

3 ;w3Þ by definition of dl: Also,
zðFlþc21

3 ;w3Þ $ zðFa
3;w3Þ because vlþc21 is an upper bound

on each of the v’s in the case of Fa
3 and gðdaÞ is common to

both terms. Thus zðFl
3;w3Þ þ ðc2 1Þn ¼ zðFlþc21

3 ;w3Þ $
zðFa

3;w3Þ: Now we return to the real F3: The optimal
distribution is dl; and in w3 the network extracts 1 less
revenue from each agent than Fl

3 did because it does not set
1 ¼ 0: Thus, zðF3;w3Þ þ n1 ¼ zðFl

3;w3Þ: Combining the
last two equations, we can conclude: zðF3;w3Þ þ cn $
zðFa

3;w3Þ; and thus that w3 is c-optimal. A
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