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Entropy and the Timing Capacity of Discrete Queues
Balaji Prabhakar, Member, IEEE, and Robert Gallager, Life Fellow, IEEE

Abstract—Queueing systems which map Poisson input pro-
cesses to Poisson output processes have been well-studied in
classical queueing theory. This paper considers two discrete-
time queues whose analogs in continuous-time possess the
Poisson-in–Poisson-out property. It is shown that when packets
arriving according to an arbitrary ergodic stationary arrival
process are passed through these queueing systems, the corre-
sponding departure process has an entropy rate no less (some
times strictly more) than the entropy rate of the arrival process.
Some useful by-products are discrete-time versions of: i) a proof
of the celebrated Burke’s theorem (Burke, 1956), ii) a proof of the
uniqueness, amongst renewal inputs, of the Poisson process as a
fixed point for exponential server queues (Anantharam, 1993), and
iii) connections with the timing capacity of queues (Anantharam
and Verdú, 1996).

Index Terms—Entropy, Palm theory, queueing systems, timing
capacity.

I. INTRODUCTION

SEVERAL results in classical queueing theory state that
certain queueing systems have the Poisson-in–Poisson-out

property. That is, if the arrival process to such a queueing
system is Poisson, and it is stable (arrival rate service rate),
then the equilibrium departure process from the queueing
system is also Poisson. These systems include, for example,
the first-come-first-served (FCFS) exponential server queue
(symbolically, the /M/1 queue); a queue which dispenses
independent and identically distributed (i.i.d.) services with
a general distribution and has either of the following service
disciplines: 1) last-come-first-served (LCFS) with pre-emptive
resume (the /GI/1-LCFS queue), 2) processor sharing (the
/GI/1-PS queue); infinite server queues where the service times
are i.i.d. and arbitrarily distributed (the /GI/ queue); Jackson
Networks; and others which incorporate traffic of different
classes. Details of these results may be found, for example, in
[10], [17].
We shall show that the discrete versions of some of these

queueing systems are entropy increasing in the following
sense: When an arbitrary stationary and ergodic arrival process
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is passed through such a queueing system, the corresponding
equilibrium departure process has an entropy rate no less (and
sometimes strictly more) than that of the arrival process.
We explore the connection of entropy-increasing properties

with the timing capacity of queues, as considered in the recent
paper of Anantharam and Verdú [2]. Anantharam and Verdú
consider the problem of a sender transmittingmessages encoded
in the arrival times of packets to a queue. The receiver tries
to decode the message by observing the departure times of the
packets, the randomness of the packet service times corrupting
the transmitted message. Discrete-time analogs of this model
were considered by Bedekar and Azizog̃lu [4], and Thomas
[16]. We consider the timing capacity of the /GI/1-FCFS queue
and rederive some formulas obtained earlier in [4], [16].
Repeated use is made of two basic techniques: one queueing-

theoretic and the other information-theoretic. The queueing-the-
oretic technique consists of comparing the statistical evolution
of the queue in forward and in reversed time. This technique has
been used to good effect in the study of reversible and quasi-
reversible queueing systems, of which the queues considered
here are examples (see [10] for a detailed analysis of reversible
queueing networks). The information-theoretic technique con-
sists of the following basic fact. Let and be finite or count-
able sets, be a bijection, and and be random
variables taking values in and such that . Then
the entropy of equals the entropy of ; i.e., .
Since the use of bijections is central to our arguments, we con-

sider discrete-time, discrete-state analogs of the queueing sys-
tems /M/1 and /GI/1-LCFS. However, some queueing systems
are either more easily studied in continuous time or have prop-
erties that require a continuous-time formulation. For example,
one such property is that the superposition of two independent
simple point processes is a simple point process. A “simple”
point process is one that almost surely does not have more than
one point occurring at the same time. Such a feature cannot be
guaranteed when time is discrete. It is necessary to deal with su-
perpositions when studying networks of queues, where the ar-
rival process to a node can be the superposition of departures
from other nodes. We do not attempt a study of continuous-time
queueing systems in this paper.
The rest of this section introduces some notation that will

be used subsequently. Sections II and III, respectively, estab-
lish entropy increasing properties for a FCFS queue with i.i.d.
geometric service times, and for a pre-emptive resume LCFS
queue dispensing i.i.d. service times. Section IV considers the
timing capacity of an FCFS queue. The Appendix presents a
derivation, in discrete time, of previously known results con-
cerning the connection between the entropy rate of the time-
and Palm-stationary versions of a point process. These results
are needed for the proof of Theorem 2 in Section III.
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A. Notation
The basic discrete-time queueing model is one in which ar-

rivals take place just at the beginning of time slots and departures
take place just before the end of time slots. Suppose that is
the arrival time of the th packet to the queue. The numbering is
such that .
Wewill implicitly assume throughout the paper that the numbers
of packets are marked upon them. Let be the
interarrival time between packets numbered and , and
let denote the process . Let be the service
time requirement of the th packet. Denote by the process

. For stability, it is assumed that .

II. ENTROPY AND THE /GEOM/1 FCFS QUEUE

Consider a single server FCFS queue at which the services
are independent and geometrically distributed with mean .
Specifically, let , for . Note
that this disallowsmore than one packet from departing in a time
slot. We shall also insist that , so that the service times are
not exactly equal to (if the service times equal a.s., then no
queues will form and the departure process is simply equal to
the arrival process shifted by one unit of time).
This queue is the discrete-time analog of the exponential

server queue, and we shall denote it symbolically as /Geom/1.
The arrival process is assumed to be stationary and ergodic,
with , and is independent of the service times

. The waiting time of the th packet may be
obtained via Lindley’s equation as follows:

(1)

As a result of the stability assumption , the
random variables are known to be finite a.s. (see Loynes
[11]). The departure time of the th packet may then be obtained
from the equation

(2)

Thus, (1) and (2) completely specify the departure times in terms
of the arrival and service times. Let be the function defined
by (1) and (2) such that

In the sequel, we will often deal with finite sequences of the
form . Given such a sequence and ,
one can obtain the departure sequence recur-
sively from the equation

(3)

Let denote the recursion

On the other hand, from the arrival and departure times one may
deduce the service times using the equation

(4)

Analogous to the recursions and , (4) defines func-
tions and such that

It is well known [18] that if is i.i.d.,
for and , then the inter-departure time

sequence is distributed identically
as . For general stationary and ergodic arrival pro-
cesses, given that , the result of Loynes’ [11]
asserts that the departure process is also stationary and er-
godic with Indeed, this is easy to see from
Lindley’s recursions for the waiting and inter-departure times

The first equation and the joint stationarity and ergodicity of
implies that is

jointly stationary and ergodic. This and the second equation
imply that is jointly stationary and
ergodic. Unless explicitly stated otherwise, all queues and net-
works considered in this paper are assumed to be stable and in
equilibrium.
Let , , and

. If is the entropy of ,
then the entropy rate of is defined as

By the stationarity of the sequence , it follows that

A similar definition holds for .
We are now ready to prove the following theorem which is

the main result of this section.

Theorem 1: Let be an i.i.d. sequence
of interarrival times with mean according to which packets
arrive at a /Geom/1 queue with service time equal to , where

. Let be the corresponding
interdeparture times. Then, with equality
iff is geometric.

Proof: Consider the mutual information be-
tween the vectors of the first interarrival and interdeparture
times. We may express it in the following two ways:

This implies

(5)

Dividing by and taking limits, we get
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Fig. 1. A realization of the queue-size process of an FCFS queue. Arrival times are indicated by circles and departure times are indicated by squares.

Our method of proof will be to show that

with equality iff is geometrically distributed.
Accordingly, first consider the term . From the

relationships

and

we see that there is a bijection between

and

We shall denote bijections symbolically as “ .” Thus,

We wish to obtain a bijection involving the service times .
Observe from the relationships

for
and

for

that the vectors

and

uniquely specify each other through the functions and
. Thus, we have

(6)

We are now ready to express the term in a form
that is conducive to further analysis. Consider the following:

(7)

Equality uses the bijection in (6) (recall that if and take
values in a finite or countable set and , then

). Equality is a consequence of the service times being
i.i.d., and independent of the arrival process. Dividing by and
taking limits we get

(8)

since the last two terms in of (7) vanish in the limit of (8).
To see this, note that , therefore . Hence,

, where is a geometric random variable
with mean . Now, , where
is the system time of packet 1. By Lemma 1, is geometri-
cally distributed. Therefore, and, hence, are finite.
Similarly, one can show that .
Now consider the term . We shall deal with it by

looking at the queue in reversed time.
We imagine that the queue-size process in reversed time cor-

responds to that of another queue whose arrival process is ,
in reverse; and whose departure process is , also suitably re-
versed. Thus, in reversed time, packet “arrives” at time and
“departs” at time . Observe that packet arrives before
packet in reversed time (see Fig. 1).
Corresponding to the operation of the queue in reversed time,

we associate “reverse service times” with the
packets as follows:

(9)

The similarity between (9) and (4) is clear once we interchange
the role of arrivals and departures. The interpretation is that
is the service time of the th packet “in reverse.” That is, if
packets arrive according to reversed and depart according to
reversed, is the amount of time packet would have spent

at the head of the queue. Fig. 1 illustrates this interpretation for
a sample realization. We can rewrite (9) and express in terms
of and as

(10)

It is clear that, analogous to the bijection in (6), (9) and (10)
imply the following bijection:

(11)

The joint stationarity and ergodicity of also implies the
stationarity and ergodicity of the process . We
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have already argued the ergodicity of . The ergodicity of
follows from rewriting (9) as

(12)

since is the system time of packet , equal to the sum
of its waiting and service times.
Proceeding

(13)

where is due to the joint stationarity of and is
due to the bijection in (11). Dividing by and taking limits, we
obtain

since the last two terms of vanish in the limit. By the station-
arity of , we may rewrite the last expression as

Thus, in order to prove Theorem 1, it suffices to show that

with equality iff the interarrival times are geometrically dis-
tributed. But , as a conse-
quence of unconditioning. Hence it is sufficient to show that

(14)

with equality iff is geometrically distributed.
Observe that the average service time of a packet is the same

in forward and reversed time; that is, . This
follows immediately from two facts, which are easily verified.
1) Packet begins a busy period, say , and packet
terminates it in forward time iff packet begins a busy
period, say , and packet terminates it in reversed time. This
implies that there are exactly the same number of packets in busy
cycles and . 2) The lengths of and are identical.
Since the length of a busy period is the sum of service times of
the packets involved in that busy period, it follows from the two
previously mentioned facts and the law of large numbers that

.
Since is geometrically distributed and the geometric

distribution uniquely maximizes the entropy of all positive,
integer-valued distributions of a given mean, it follows that

. To complete the proof of Theorem 1, it
suffices to show that is not geometrically distributed unless

is geometrically distributed.

So, what is the distribution of ?
From (12) we know that

where equals the system time of packet . A
moment’s reflection shows that is precisely the amount of
time that packet spends at the very back of the queue evolving
in forward time (see Fig. 1 for an illustration). By contrast, the
service time of packet is the amount of time it spends at the
very front of the queue evolving in forward time. Proceeding

(15)

where follows from the fact that the system time of packet
depends only upon interarrival times and service
times , and that is independent of all these
variables (by the renewal assumption on the arrival process). We
proceed with the following lemma which says that the system
time of a typical packet in a GI/Geom/1 system is geometrically
distributed.

Lemma 1: Let be an i.i.d., mean
interarrival sequence according to which packets arrive at a
/Geom/1 queue with mean service time . Then the
system time of a packet is geometrically distributed.

Proof: Let be the total number of packets in the queue
immediately after the arrival of packet , including packet and
the one in service. It is a well-known fact of continuous-time
queueing theory (see, for example, [17, Sec. 8-6]) that the total
number of packets in a stable GI/M/1 queueing system immedi-
ately after the arrival of packet is a Markov chain with a geo-
metric equilibrium distribution. Adapting the same argument to
discrete renewal arrivals and i.i.d. geometric services is straight-
forward and implies that is geometrically distributed.
The system time of packet is, therefore, equal to ,

where the are the service times of the packets found in the
queue by packet when it arrives (and this includes its own ser-
vice time). But the are i.i.d. geometric with mean and in-
dependent of . Being a geometric sum of geometric random
variables (r.v.’s), the system time of packet is geometrically
distributed.

Using the conclusion of Lemma 1 in (15) we get for every
that

for some (16)

It follows that is geometric iff is geometric, proving The-
orem 1.

Corollary 1: Let be a mean ergodic, stationary inter-
arrival process to a /Geom/1 queue with mean service time ,
where . Let be the corresponding departure process. If
the interarrival times have a tail that decays faster than a geo-
metric of mean , i.e., for all
large enough, then .

Proof: From the proof of Theorem 1, we know equals
the minimum of the system time of packet and . We also
know that it has mean . Since , it suffices
to show that is not geometrically distributed for this would
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imply that and hence that
. Now

Since for large enough, it follows
cannot be geometric with mean .

Suppose is an i.i.d. mean geomet-
rically distributed sequence. The process will be called the
Geometric arrival process. For each , let

Then, the relative entropy between and is

Define the “relative entropy rate” between and as

Corollary 2: Consider queueing systems that satisfy the hy-
potheses of Theorem 1 and/or Corollary 1. Let

be an i.i.d. mean geometrically distributed sequence.
Then, with equality iff the interar-
rival times are i.i.d. geometric.

Proof: Now

Therefore,

and similarly

From Theorem 1, with equality iff
is geometric. Therefore, with
equality iff is geometric.

Corollary 3: Let be a mean ergodic, stationary arrival
process to a /Geom/1 queue with mean service time , and
let be the corresponding departure process. The following
statements hold.
1) If is the Geometric arrival process, then so is .

2) The only renewal arrival process that is a fixed point for
the queue (i.e., ) is the Geometric arrival process.

Proof: Both statements follow from Theorem 1.

Statement 1) is the discrete-time equivalent of Burke’s the-
orem [5]. Statement 2) is an entropy proof of the uniqueness of
the geometric arrival process as a fixed point for the /Geom/1
queue among all renewal arrival processes. This result is con-
tained inAnantharam [1], who used ametric on arrival processes
to show that the only stationary and ergodic fixed point for the
/M/1 queue is the Poisson process.
One can view the /Geom/1 queue as a “Markov operator,”

producing a departure process distribution from an arrival
process distribution. Speaking in this somewhat abstract
fashion, passing an arbitrary arrival process through a series
of i.i.d. /Geom/1 queues is like watching the evolution of a
discrete-time Markov chain (see [14]). This makes possible
connections with such notions of standard Markov chain theory
as the existence of invariant distributions and relative entropy.
If is the distribution of a Markov chain on a (countable) state
space at the th step and if is the corresponding invariant
distribution, then it is well known that goes to zero as

.
The existence of an invariant distribution for the /Geom/1

queue is, of course, well known and rederived in Corollary 3
of this paper using entropy arguments. It is none other than the
geometric arrival process . Just as in standard Markov chain
theory one expects that , the relative entropy of
the departure process from the th station of a series of i.i.d.
/Geom/1 queues with respect to the invariant distribution , de-
creases to zero as goes to infinity. Corollary 2 provides a par-
tial answer in that it shows that is nonincreasing.
It has been established in [12] via coupling arguments that
converges in distribution the ; thus, there is a non-entropy

argument for the desired convergence.

III. THE /GI/1-LCFS QUEUE

Consider a queue at which the service times are
nonnegative integer-valued, i.i.d., arbitrarily distributed and
have a mean equal to . We will be interested in showing
that the entropy rate of the departure process is no less than
that of the arrival process. In general, point processes have two
representations: the time and the Palm representations. In the
time version, the point process is viewed as a time-stationary
and ergodic process taking values in the space of random point
measures (or Radon measures), while in the Palm version one
considers the interoccurrence process as a stationary and ergodic
process. Palm processes are obtained from the corresponding
time processes by restricting to the event that a point occurred
at the origin. In the previous section and in the rest of the paper,
we consider entropy rates with respect to the Palm measure.
However, in this section we shall find it useful to invoke the
time-stationary representation in order to prove Theorem 2.
The Appendix reviews the connection between time and Palm
entropy rates; specifically, it shows that the time entropy rate
equals times the Palm entropy rate. Thus, an increase in
one implies an increase in the other.
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Fig. 2. A realization of a ./GI/1-LCFS queue.

We shall continue to assume that . For
technical reasons, we will also assume that the service times
have a bounded support: that is, there is an such that

. Note that this implies . To
avoid trivialities, we will insist that . Other-
wise, every arriving packet receives only one unit of service
and hence no queues can form. Suppose the service discipline
is LCFS with preemptive resume. That is, every arriving packet
begins service immediately, interrupting any packet, say ,

that may be in service, and ’s service is resumed when ’s ser-
vice is completed. This service discipline is best visualized as
a push-down stack, where arriving packets are placed at the top
of the stack and the entire service effort is directed toward the
top-most packet.
Fig. 2 shows a sample realization of a /GI/1-LCFS queue for

positive time, assuming that there are zero packets queued at
time .
We will continue to assume that packets are numbered ac-

cording to their arrival times. Thus, packet arrives at time ,
where the s are a strictly increasing sequence and
. Let denote the departure time of packet . As opposed to

the FCFS service discipline, the departure order of packets may
differ from their arrival order. Thus, although for each
, could be bigger than . The reordering is illustrated
in Fig. 2, where the packet arrival order is 1, 2, 3, 4 while the
departure order is 3, 4, 2, 1.
For , let be the time of the th departure from the

queue at or after time , and for , let be the time of
the th departure from the queue before time . Thus,

. For the rest of the
paper, the departure process from the queue will be denoted by

. Note that with the definitions
of arrival and departure times as above, if , then
the th arrival occurs at time just after the th departure has
occurred at time . This is a consequence of our assumption
that arrivals take place at the beginning of time slots and depar-
tures take place at the end of time slots. Given the stationarity
and ergodicity of the arrivals and service processes, it follows
from Theorem 6 of the Appendix that the departure process is

also stationary and ergodic (and thus its entropy rate is well de-
fined).
It is a well-known fact of continuous-time queueing theory

(see [10], [17], for example) that if the arrival process
to a stable /GI/1-LCFS is i.i.d. exponential,

the equilibrium departure process is also
i.i.d. exponential. (Note that the departure process is defined
in terms of the ’s and not the ’s.) One expects an analo-
gous result to be true in discrete time: When the services are
i.i.d., nonnegative integer valued with a mean and when

has i.i.d. geometric interarrival times with
mean (for ), the departure process
is also i.i.d. geometric. This follows as a simple corollary of The-
orem 2 which shows that, subject to some restrictions on input
and service distributions, the /GI/1-LCFS queue increases the
entropy of a process passing through it.
As before, we will look at the queue in reversed time by

changing the roles of the arrival and departure processes. Thus,
in reversed time, arrivals occur according to reversed and
depart according to reversed. The service discipline for the
queue evolving in reversed time is also LCFS with preemp-
tion. We will again be interested in determining “reverse ser-
vice times” for packets. Since packet departure orders may not
be equal to packet arrival orders, we distinguish the reverse ser-
vice time of the packet departing at time and that of packet
numbered , which departs at time . Accordingly, denote the
former by and the latter by .
For convenience, we name the queue evolving in forward time
and the queue evolving in reversed time . Because of

the LCFS service policy, the forward service time of packet
is precisely the total time it spends at the very back of .

Since also employs the LCFS service policy, also equals
the amount of time packet spends at the very back of . A
moment’s reflection (aided by the illustration in Fig. 2) shows
that packet is at the back of precisely during the same
instants of time that it is at the back of . Therefore, .
We now relate the reverse service times and . By def-

inition, is the reverse service time of packet numbered ,
whereas is the reverse service time of the packet arriving to
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at time . Therefore, what is the number of the packet ar-
riving to at time ? Equally, what is the number of the
packet departing from at time ? Since only one packet
departs from per time slot (recall a.s.), there is a
random one-to-one mapping, , taking packet arrival
orders into packet departure orders. That is, if , then
the th arriving packet is the th departing packet. Thus, the
packet departing at time is numbered . This implies

.
As in the case of FCFS queues, showing that the departure

process has a higher entropy rate than the arrival process
reduces to showing that entropy rate of the forward service
times is greater than the entropy rate of the reverse service
times. However, the entropy rate of the reverse service times
process, , need not exist, since the process

is not stationary in general. This can be shown to
be a consequence of the so-called “Inspection Paradox”: The
reverse service time of the first packet to depart after time is
likely to be longer than that of a typical departure.1 We deal
with this technicality as follows.
Let be the busy cycles of , where is the busy cycle

initiated just before (and possibly including) time . Suppose
there are arrivals in after time and, for , let

plus the number of arrivals in busy cycles . Note
that increases to .

Definition 1: Consider a stable discrete-time /GI/1-LCFS
queue fed by stationary and ergodic arrival processes. It is said
to satisfy the M-condition if there exists an such that

a.s.

Conditions: Reference [17, Theorem 9, p. 422] asserts that
the M-condition is met if the arrivals are renewal. In fact, in this
case, the family of random variables will
be i.i.d. with finite first moment.
Now, the numbers of the packets arriving from time until

the termination of , , is the set . Let
be the number of packets in the queue at time . Thus, there

are partially processed packets in the queue at time which
arrived during negative time. From time through the end of ,

, there will be exactly departures. The numbers of
these departing packets are in the set

Consider the first departures and let

be the set of associated packet numbers. Take any positive entry
. This means packet was among the first departures

after time . Since is positive, packet could have been among
the first departures only if it had been among the first
arrivals. Therefore, . This and the fact that contains
only positive entries implies that

1We thank Venkat Anantharam for this observation, leading to the correction
of a previous argument.

Now

and

Notice that the cardinality of the set is at most equal to
. This follows from the following facts: i) for

and ii) there are at most negative entries in .
Also note that the cardinality of equals the cardinality
of . This gives

As , , and

For each , there is an such that , and

Since converges a.s. to , we get

a.s.

Further, since

by bounded convergence it follows that

(17)

Lemma 2: Consider a /GI/1-LCFS queue fed by an arbitrary
stationary and ergodic arrival process. Suppose that the service
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Fig. 3. The queue-size process.

times have a finite support; i.e., there is an such that
. Then

Proof: For each define the Cesaro random variables
as

for

By concavity of the entropy function we get that
. We know from (17) that converges in distribution

to . Since , and hence all the , have a bounded support,
it follows that . This proves the lemma.

Queue-Size Process: Before proceeding further we mention
an important feature of discrete-time queues relevant for the
main result of this section. As mentioned at the outset, we as-
sume that arrivals occur just after the beginning of a time slot
and departures occur just before the end of a time slot. Thus, the
queue size at any time has two components: , measured
just after possible departures at the end of time and ,
measured just after possible arrivals at the beginning of time .
This is illustrated in Fig. 3. Since it follows
that iff .

Definition 2: A stable discrete-time /GI/1-LCFS queue
is said to satisfy the Q-condition if the number of packets
in the queue in equilibrium has a finite first moment; i.e.,

.

Some Conditions: We list a few well-known necessary and
sufficient conditions on the arrival and service processes for
a /GI/1-LCFS queue to satisfy the Q-condition (for details,
see [7]). Given that the services are i.i.d., it is necessary
that . Each of the following conditions on the
arrival process is sufficient: is i) renewal, or ii) strongly
mixing. Thus, a wide variety of /GI/1-LCFS queues satisfy the
Q-condition. We are interested in the Q-condition because of
the following lemma.

Lemma 3: Let be the equilib-
rium queue-size process of a /GI/1-LCFS queue satisfying the
Q-condition. Then, .

Proof: The random variables and are nonnega-
tive, integer-valued, and have finite means. Their entropies are
majorized by geometric random variables with means equal to

and , respectively. It follows that
.

The M- and Q-conditions will be used in bijections related to
LCFS queues. To relate the evolution of the queue in forward
and reverse times we need to consider “attained” and “residual”
service times (defined below). The M- and Q-conditions ensure
that the entropy of these quantities is finite, allowing us to take
limits. The details are made clear in Theorem 2. But, first, we
define attained and residual service times.
Attained and Residual Services: Let denote the ordered

vector of packets in queue at time together with the
amount of service each has already received. Let denote
the ordered vector of packets in queue at along with the
amount of service each has yet to receive.

Lemma 4: Consider an LCFS queue satisfying the M- and
Q-conditions. If the support of the service times is bounded
by , then there is a not depending on such that

.
Proof: Write , where is the

service yet to be received by the th packet from the front of the
queue at time and consider

since
(18)

where is a constant not depending on since
is a stationary process.
Similarly, to show that , write

, where is the amount of service already re-
ceived by the th packet from the front and argue as above. Fi-
nally, letting proves the lemma.

Having established the preliminaries, we are ready to prove
the following theorem.

Theorem 2: Let be a stationary and ergodic arrival process
with mean interarrival time arriving at a /GI/1-LCFS
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queue with mean service time . Suppose that the ar-
rival and service process are such that the M- and Q-conditions
are satisfied. Suppose also that the service times have a finite
support. Let be the corresponding departure process. Then,

.
Proof: For consider the queue-size process re-

stricted to : . Let

be the number of arrivals in . It is not hard to see that the
following bijection holds:

(19)

Note that if then . In this case, it is to be
understood that and are the empty vectors.
By Lemma 3, it follows that . This and the er-

godicity of the process imply that it has a finite
entropy rate. We have also seen that both and
are uniformly bounded.
Now taking entropies at (19), dividing both sides by , and

letting go to infinity we get

(20)

Consider the term . By assumption, the
service process is independent of the arrival process and hence
of , which is the number of arrivals in . Therefore,

where uses the independence of the service process from
and uses the fact that it is i.i.d. Therefore, (20) be-

comes

(21)

Consider the term

By the well-known Shannon–McMillan–Breiman theorem

a.s. and in

Since the random variables increase to , it follows that

a.s.

Given the above almost-sure convergence, if we could show that
the random variables are uniformly inte-
grable, it follows that

But establishing uniform integrability is technically quite in-
volved. Instead, we appeal to a result of Papangelou [13] (stated
as Theorem 5 in the Appendix) and obtain via Corollary 5 that

Using this in (21) gives

Let be the number of departures
in . Analogous to the bijection in (19) we obtain

by evolving the queue backward in time. Again, we adopt the
convention that if then and are the
empty vectors. This bijection gives

(22)

where follows from the ergodicity of and Corollary 5.
Now consider

(23)

where since (recall
that there is at most one departure per time slot), and is as de-
fined in Lemma 2. Since the service times have a finite support,
contained in , it follows that . We know
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from the proof of Lemma 2 that . Therefore,
given a , we may choose an such that

Using all this we obtain

(24)

since the average departure rate equals the av-
erage arrival rate . Since is arbitrary, it follows that

Using this at (22), we get

Or, . This proves Theorem 2.

Corollary 4: Let be an arrival process with i.i.d. geometric
interarrival times of mean arriving at a /GI/1-LCFS queue
with mean service time , where . Also, suppose that
the service times have a bounded support. Then the departure
process is distributed as .

Proof: This follows from Theorem 2 and two facts:
1) is stationary and ergodic with mean interoccurrence time
equal to , and 2) among stationary and ergodic processes
with a given mean interoccurrence time the geometric process
uniquely maximizes entropy rate. Thus,
and is geometric.

IV. THE TIMING CAPACITY OF SINGLE SERVER QUEUES

The paper of Anantharam and Verdú [2] considers a (con-
tinuous-time) queue as a channel through which a transmitter
sends a message encoded in the arrival times of packets. The re-
ceiver decodes the message by observing the departure times of
the packets. The randomness of the service times of the packets
corrupts, or distorts, the original message embedded in the ar-
rival times. Bedekar and Azizog̃lu [4] extend the results of [2] to
discrete-time queues and also study some variations involving
multiple services per time slot.
In this section, we consider the timing capacity of /GI/1-

FCFS queues and use our approach involving bijections to red-
erive some results from [2] and [4]. As this section is somewhat
tangential to the rest of the paper, whose main focus is demon-
strating the entropy increasing property of queueing systems,

we shall consider “timing capacity” only in the sense of maxi-
mizing input–output mutual information.2
Consider a /GI/1-FCFS queue with arrival process and de-

parture process . For each , let

(25)

where the supremum is taken over the laws of rate input pro-
cesses. In order for the limit to exist, we shall assume that the
inputs are stationary and ergodic. Note that as defined,
can be thought of as the “timing capacity” in bits per arrival (as-
suming the base of the logarithm is ). It is more natural to define
the capacity as the amount of information that can be transmitted
per unit time. The fact that there are arrivals per unit time (or
time slot) on average motivates the following definition.

Definition 3: The timing capacity of a /GI/1-FCFS queue in
bits per unit time is defined to be for as
defined in (25).

Remark: When the service times are i.i.d., so long as the
server conserves work and does not interrupt the service of a
packet, it does not matter what the service discipline is: the
timing capacity comes out to be same for all service disciplines
and only depends on the service distribution (see [2] for an
elaboration). We are making the FCFS discipline explicit in the
above definition, since the LCFS results in this paper are derived
for a preemptive resume discipline.

Denote by and the above quantities spe-
cialized to i.i.d., geometric service times. To employ the nota-
tion developed in the previous section, we shall suppose that the
queue is initially in equilibrium.

Theorem 3: Consider a /Geom/1-FCFS queue with mean
service rate . For each fixed

where and are geometric random variables with means
and , respectively. Thus, the capacity-achieving arrival

process has i.i.d. geometrically distributed interarrival times of
mean .

Proof: We shall first evaluate

for an arbitrary arrival process . Since

we obtain that

But, by (8), for as defined.
2As mentioned in [2], no previous theorem guarantees that maximizing

input–output mutual information is equivalent to determining the timing
capacity of queues. A more careful treatment would follow the formalism
presented in [2].
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Therefore, .
Since arrivals and services are independent, the supremum over
arrival processes is not affected by the term, and thus
one only seeks to maximize by a good choice of .
Corollary 3 implies that the supremum is achieved when is

a geometric process with mean , for then is distributed as
. Hence, for and as

stated in the theorem.

It is shown in [4] that amongst discrete-time FCFS queues
with a fixed mean service time, the /Geom/1 has the worst ca-
pacity. A similar result is obtained in [2] in the continuous-time
setting. Moreover, [2, Theorem 5] presents an upper bound on
the capacity of a continuous-time /GI/1-FCFS queue. For dis-
crete-time queues, the capacity of a /GI/1-FCFS queue
with service time satisfies the bound

Formally, let , , and be the arrival, service, and
departure processes from a /GI/1-FCFS queue. Suppose that
is stationary and ergodic and that the queue is stable. Since

the bijections used in Section II to obtain (8) did not rely
on the services being geometric, (8) is valid for general i.i.d.
services as well. Therefore,

But the departure process has rate and its entropy rate is dom-
inated by that of the geometric process of the same rate. We get

Since the above inequality is true for all arrival processes, taking
the supremum over all rate arrival processes on the left-hand
side, we get that

Let . Now from

we obtain that as announced.

V. CONCLUSION

We have considered two discrete queueing systems and
have shown that they increase the entropy of a process passing
through them. Some of the arguments used in the proofs are
of general interest, possibly applicable elsewhere. While our
method of proof in Section III requires the Q- and M-condi-

tions, we believe Theorem 2 will hold under less restrictive
assumptions on the arrival and service processes. Perhaps
the biggest benefit of approaching queueing systems from an
entropy standpoint is one of interpreting well-known queueing
results (e.g., Burke’s theorem) in a new way.

APPENDIX

The purpose of this appendix is to present some known results
about point processes and their entropies, and the ergodicity
of derived quantities like queue size and departure processes.
These results are used in the proof of Theorem 2.
We shall be particularly interested in the connections between

Palm and time-stationary probabilities, and hence in the connec-
tion between the entropy rate of the interoccurrence process (the
entropy per arrival) and the entropy rate of the point process (the
entropy per unit time). The results of interest to us—Theorem
5, Corollary 5, and Theorem 6—will be derived in the simpler
discrete-time setting of this paper to keep it self-contained. The
main references for this appendix are [3], [8], [13], and [15].

A. Point Processes in Discrete Time
A counting measure on is a measure on , where

denotes the discrete topology on , such that
a) for all ,
b) for all bounded intervals .
Let be the set of all counting measures, , on . Endow
with the sigma field generated by functions ,

where is a subset of . The pair , is known as the
canonical space of point processes; and a point process is
thought of as a measurable mapping from some probability
space into , .

Definition 4: Apoint process is an -valued random vari-
able represented as

(26)

where
a.s.

and is the point mass at .

The random variable specifies the position of the th point
of . For any measurable function

The translation or shift operator operating on is defined
for each by

The point process is said to be stationary with respect to the
family , if for every both and
have the same law. The set is said to be -invariant
if for all . is said to be ergodic iff all -in-
variant sets

for all
have probability or .
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We shall only be interested in stationary and ergodic point
processes as we are primarily concerned with the equilibrium
behavior of stable queues under stationary and ergodic inputs.
It is convenient to think of the point process as the binary-

valued process , where

Clearly, is an ergodic stationary process since is
ergodic stationary.
Let be the set of interoccurrence

times of the point process . Let be the number of
points of in the interval . Then, is the
average rate of . Note that , and
that .

B. Palm Probability and Entropy
The Palm probability of the point process is defined

on the probability space , where
and . Thus, the Palm probability is supported
by those sequences which have a point at the origin. It is well
known (see [15], or [3, Chapter 1]) that is the distribution
of the process of interoccurrence times , while
is the distribution of the process . Further, the two
probabilities and are related by the expression

(27)

Theorem 4 [15, Theorem 3]: The process is
stationary and ergodic with respect to (w.r.t.) iff the process

is stationary and ergodic w.r.t. .

The entropy rate of the point process is

Thus, it is the amount of information per unit time and the
superscript emphasizes this point. The quantity

is the amount of information per occurrence, emphasized by the
superscript.
The following theorem was originally proved by Papan-

gelou [13] in the general (and quite technical) setting of
continuous-time point processes. We state and prove it in the
discrete-time setting of this paper.

Theorem 5 [13, Theorems 3 and 3a]: The entropy rates
and defined above are related by the equation

.
Proof: Establishing the equality

(28)

essentially boils down to relating the probabilities of events
under the measures and . We shall establish these rela-
tionships after making some definitions.
Let , , and .

Note that the variables and generate the same sigma
algebra. Let , , and
be such that

With these definitions, we claim the following equations
hold:

(29)

(30)

(31)

(32)

We establish (29) and (31), the proofs of (30) and (32) are
identical.
The first equation in (29) is immediate from the definition of
, , and . The second equation follows from

Next consider (31)

(33)
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From (29), the numerator equals . As
for the denominator

since, by definition,

where is due to the stationarity of w.r.t. and
is due to the stationarity of w.r.t. (see

Theorem 4). Using all this at (33) we get

thus establishing (31).
To economize on space, we compactify notation and set

Continuing with the proof of Theorem 5

Substituting the Palm probabilities for the various events in the
last expression yields

(34)

(35)

(36)

The expression at (34) equals , while (35) and (36) cancel
telescopically to yield

which equals since for every
. Therefore, and Theorem 5 is proved.

Corollary 5: Consider the processes and de-
fined above. Let be the number of points of in .
Then

Proof: Observe that

Therefore,

from which and Theorem 5 the corollary follows.

C. Marked Point Processes
Stationary marked point processes and their associated Palm

theory can be found in [3, Sec. 1.3]. We will only recall the bare
essentials here.
Let

(37)

be a stationary and ergodic point process, and let be
an i.i.d. sequence of positive integer-valued random variables,
independent of . We imagine to be the arrival
time of th packet and to be its service time. The process

defined by

is a marked point process which takes the value zero where there
are no points of and at the points of it takes the value of
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the marks . It is important to note that since the can only
take on positive integer values, this definition is unambiguous.
A marked point process is said to be stationary and ergodic

if defined above is stationary and ergodic w.r.t.
under time translations: that is, for each

The stationarity and ergodicity of follows from
that of the arrival point process and the fact that
is i.i.d. and independent of the arrival times (see
[3, Example 1.3.4]).

Theorem 6: Consider a /GI/1-LCFS queue with a stationary
and ergodic arrivals process defined as in (37) and service
times . Suppose . Let

be the resulting equilibrium queue-size process, and
let be the corresponding departure
process. Then and are both stationary
and ergodic with respect to time translations.

Proof: Let and be such that

The existence of sets and as above is ensured by Loynes’
pathwise construction of the queue-size process (given the
LCFS service discipline) from the arrival and service processes.
The equation

verifies the stationarity of the queue-size process. If is a
shift-invariant event for the queue-size process then is a
shift-invariant event for . The ergodicity of the
latter implies that or . Therefore, or
. This proves the ergodicity of the queue-size process.
The stationarity and ergodicity of the departure process fol-

lows immediately from that of the queue-size process.
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