
36

Internet designers assumed users
would be congestion sensitive—that is, they
would automatically cut down their sending
rates when the network became congested.
Thus, the Internet takes a passive role in pro-
viding quality of service (QoS) under heavy
user loads. As the Internet grows, however, the
variety of users increases, and this assumption
becomes invalid. Consequently, the Internet
can no longer guarantee high-quality service
to all users. If routers could more actively par-
ticipate in bandwidth distribution, the Inter-
net would be more robust and could
accommodate more diverse users.1

Two general categories of fair-bandwidth-
allocation mechanisms, each with its own
drawbacks, exist.2 The first category, which
includes fair queuing (FQ)3 and its many vari-
ants,4,5 uses complex packet-scheduling algo-
rithms that are more difficult to implement
than first-in first-out (FIFO) queuing. Algo-
rithms in the second category—active queue
management schemes with enhancements for
fairness, such as flow random early detection
(FRED),6 and stochastic fair blue (SFB)7—
are based on FIFO queuing. They are easy to
implement and are much fairer than the orig-
inal random early detection (RED) design,8

but they don’t aim to provide max-min fair-
ness among numerous flows.

In other work, we propose approximate fair
dropping (AFD),9 a router mechanism that
achieves approximately max-min fair band-
width allocations with relatively low com-
plexity. In this article, we propose an AFD
implementation that can mimic the original
design’s performance while retaining much
less state.

Approximate fair dropping
Like RED, AFD is an active queue man-

agement scheme that uses a FIFO queue and
drops packets probabilistically as they arrive.
AFD, however, bases flow-dropping decisions
not only on queue size but also on its estimate
of the flow’s (say flow i) current sending rate
ri. To achieve max-min fairness, we define the
dropping function di as (1 − rfairri

−1)+. As a
result, fair share ri(1 − di) = min(ri, rfair) bounds
each flow’s throughput. Hence, AFD does not
distribute drops evenly across flows but applies
them differentially to flows with different
rates. What sets AFD apart from other queue
management algorithms is its simple and sys-
tematic approach to estimating ri and rfair.

To estimate ri, AFD recognizes that, like
flow size distribution, flow rate distribution is
long-tailed—that is, fast flows send most
bytes, and most flows are slow. For example,
Figure 1 shows the cumulative distributions

Rong Pan
Balaji Prabhakar
Stanford University

Lee Breslau
AT&T Labs–Research

Scott Shenker
International Computer

Science Institute

APPROXIMATE FAIR DROPPING (AFD), AN ACTIVE QUEUE MANAGEMENT

SCHEME, ALLOCATES LINK BANDWIDTH IN AN APPROXIMATELY FAIR

MANNER. AFD-NFT, AN ENHANCEMENT TO AFD, PERFORMS SIMILARLY AND IS

MUCH EASIER TO IMPLEMENT.

APPROXIMATE FAIR ALLOCATION
OF LINK BANDWIDTH

Published by the IEEE Computer Society 0272-1732/03/$17.00  2003 IEEE

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:23 from IEEE Xplore. Restrictions apply.

of the 1-second flow rates for three different
traces. In these data sets, 10 percent of the
flows represent between 60 and 90 percent of
the total bytes. Therefore, a sample of recent
traffic consists mainly of bytes from faster
flows and, typically, these flows send at or
above the fair share. Most slow flows won’t
show up in the sample and AFD can ignore
them because it won’t drop them. Thus, AFD
needs only keep state proportional to the
number of fast flows, which is much less than
per-flow state. To do this, AFD maintains a
shadow buffer of b arrival packet samples
(headers only).

Suppose flow i has mi packets in the shadow
buffer. AFD can approximate i ’s arrival rate
by mi = briR−1, where R is the aggregate arrival
rate. Clearly, we can rewrite the drop function
as di = 1 −(mfairmi

−1), where mfair = brfairR−1.
AFD obtains mfair implicitly. Varying mfair

intentionally causes Σiri(1 − di) to change
accordingly, which makes the queue length
fluctuate. It will stabilize when Σiri(1 − di)
equals the outgoing link capacity, at which
point mfair = brfairR−1. To ensure the queue
length stabilizes near a target value, AFD
updates mfair, using the equation

mfair(t) = mfair(t − 1) + α(q(t − 1) − qtarget) −
β(q(t) − qtarget)

where q(t) is the queue length at the tth sam-
ple, q(t − 1) is the queue length at the previ-
ous sample, and qtarget is the target queue size.
Constants α and β are configurable parame-
ters. We discuss in detail how we set these
parameters elsewhere.9

Using this method, we can infer mfair

dynamically with no additional state. Analy-
sis indicates that AFD’s memory requirements
are a small fraction of those needed for the
packet buffers.9

We have evaluated AFD’s performance in
a variety of simulations. One simulation setup
consists of seven transmission control proto-
col (TCP) flow groups (five flows each) with
different congestion control mechanisms and
round-trip times (RTTs). The congested-link
bandwidth is 10 Mbps, thus Rfair equals 286
Kbps. Figure 2 compares AFD’s performance
to that of RED and FRED. Figure 2a shows
the average throughput received by each flow
group, and Figure 2b depicts the correspond-

ing drop probability of each flow group. These
results demonstrate that AFD provides a good
approximation to fair bandwidth allocation
by differentially dropping packets.

Implementing AFD
Although AFD theoretically requires only

one data structure—the shadow buffer—to
function, it is infeasible to recount mi on each
packet arrival. Hence, a direct implementa-
tion of the AFD algorithm, which we refer to
as the AFD-SB design, requires two data
structures:

• a shadow buffer that stores a recent sam-
ple of packet arrivals and

• a flow table that keeps the packet count
of each flow in the shadow buffer.

We can implement the flow table structure
using a hash table or a content-addressable
memory with O(1) lookup time. AFD updates
the shadow buffer probabilistically. When a
packet arrives with probability p (p−1 is the
update interval), AFD replaces a random pack-
et in the shadow buffer with the arriving pack-
et. Although we could remove packets using
FIFO, random replacement avoids synchro-
nization problems. After a replacement, the

37JANUARY–FEBRUARY 2003

0

0.2

0.4

0.6

0.8

1

1e–06 1e–05 0.0001 0.001 0.01 0.1 1

C
um

ul
at

iv
e

fr
ac

tio
n

of
 b

yt
es

Fraction of 1-second flow rates

Trace 1
Trace 2
Trace 3

Figure 1. Complementary distribution of 1-second flow rates for three
traces. Most bytes in the sample are from fast flows, with 10 percent of the
flows representing between 60 and 90 percent of the total bytes.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:23 from IEEE Xplore. Restrictions apply.

packet count for the flow to which the victim
packet belongs (say flow i) decreases by one,
mi = mi − 1. Conversely, the packet count for
the flow to which the incoming packet belongs
(say flow j) increases by one, mj = mj + 1.
Assume the shadow buffer contains b packets
from N flows, then Σi = 1

N m = b.
Figure 3 shows a simple example of this

packet replacement process. A shadow buffer

of size 12 holds packets from three flows.
These flows have two, six, and four packets in
the shadow buffer. When a flow 3 packet
arrives, AFD randomly chooses a flow 2 pack-
et for the newly arrived packet to replace. Flow
2’s packet count in the flow table thus decreas-
es by one while flow 3’s packet count increas-
es by one. These operations maintain the data
structures (the shadow buffer and the flow
table) used to guide dropping decisions, which
are separate from the FIFO buffers in which
actual packets are queued.

Single data structure
A randomized approximation of AFD that

keeps only one data structure, the flow table,
can reduce AFD-SB’s memory requirement.
The shadow buffer is only logically present in
the sense that

still holds. AFD increments the flow table on
packet insertions as before. The challenge is
removing a packet from the logical shadow
buffer—that is, decreasing a flow’s packet count
by one—without linearly traversing the flow
entries. Ideally, a new algorithm would mimic
AFD-SB’s performance: It would remove a flow
i ’s packet with a probability pi = mib−1. There-
fore, on average, new packets would replace all
flow i ’s packets, mi, after b updates.

The initial AFD-FT (flow table) design (to
be consistent with our other work,9 we refer to
this design as AFD-FT) works as follows: When
it is time to update the logical shadow buffer,
AFD-FT uniformly chooses a small set of flow
IDs, S. If s is the size of S, each flow has equal
probability sN−1 of being in the set. Given that
flow i is in S, it has a probability of mi(Σj∈Smj)−1

to have its count decreased by one. AFD-FT
tries to approximate pi = mib−1 under AFD-SB
with pi = sN −1 mi(Σj∈Smj)−1. AFD-FT can
approximate AFD-SB’s performance when
there are no large flows whose packet counts are
much larger than those of other flows. If such
flows exist, however, AFD-FT tends to limit
their throughput under the fair share. This gives
flows an equal chance of being present in S, even
though a flow (∈ S) with more packets has a
higher probability of being reduced. Therefore,
flow i with a higher packet count has a lower
than mib−1 chance of being reduced at each
update. Consequently, on average, its total

m bii

N
=

=∑ 1

38

HOT INTERCONNECTS 10

IEEE MICRO

0

100

200

300

400

500

T
hr

ou
gh

pu
t (

K
bp

s)

TCP flow group 0
TCP flow group 1
TCP flow group 2
TCP flow group 3

TCP flow group 4
TCP flow group 5
TCP flow group 6

RED FRED AFD

0

0.05

0.10

0.15

0.20

D
ro

p
pr

ob
ab

ili
ty

RED FRED AFD

(a)

(b)

Figure 2. Performance of RED, FRED, and AFD for average throughput
received by seven simulated TCP flow groups (a) and the corresponding
drop probability for each flow group (b).

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:23 from IEEE Xplore. Restrictions apply.

count deduction is less than mi after b updates,
leading to a higher drop probability.

Using the example in Figure 3, Figure 4
illustrates how AFD-FT behaves when s equals
one. By choosing one flow at random, flows
1, 2, and 3 each have a one-third chance of
being reduced by one. Under AFD-SB, how-
ever, the chances for these three flows are one-
sixth, one-half, and one-third. Thus, while
AFD-SB needs six updates on average to
reduce flow 1’s count by one, AFD-FT needs
only three updates. AFD-FT favors small flows
and is biased against fast flows. As our later
simulations show, this bias against larger flows
can lead to a significant throughput penalty.

New flow table design
To improve AFD-FT’s performance, we

propose a new AFD flow table design, which
we refer to as AFD-NFT (new flow table).
AFD-NFT achieves the performance of AFD-
SB with AFD-FT’s state requirement.

When it is time to decrease a flow’s packet
count by one (that is, remove a packet from
the logical shadow buffer), AFD-NFT draws
a small set S of flow IDs uniformly from the
flow entries, if such a set does not already exist.
A flow i(∈ S)’s packet count decreases by one
with a probability of mi(Σj∈S mj)−1. These
operations are exactly the same for both AFD-
FT and AFD-NFT. The next step, however,
represents the crucial difference between the
two: AFD-FT chooses new set S for each
update. AFD-NFT, on the other hand, uses
the same set S for the next u = a × (Σj∈S mj)
updates, where the constant a < 1. After u
updates, AFD-NFT chooses a new set and
repeats the same operations.

Figure 4 shows how AFD-NFT would
work if a = 0.5 and s = 1. Each flow has a one-
third chance of being drawn. When AFD-
NFT selects flow 1, m1 decreases to one.
Because u = 1, the algorithm will draw a new
flow for the next table update. Suppose AFD-
NFT chooses flow 2 instead, with u = 3. Flow
2 will be the victim flow for the following two
table updates before the algorithm selects a
new flow. Similarly, if flow 3 is drawn, AFD-
NFT will use it for the next update.

Analysis
Recall that our goal for AFD-NFT is to

match the performance of AFD-SB, replac-

39JANUARY–FEBRUARY 2003

2 packetsFlow 1

5 packetsFlow 2

5 packetsFlow 3

Flow table

2 packetsFlow 1

6 packetsFlow 2

4 packetsFlow 3

Shadow buffer
b = 12

Flow table

Shadow buffer
b = 12

Flow 3 packet arrives; AFD selects
a flow 2 packet to be replaced

Figure 3. Packet-dropping decisions in AFD-SB. When a
packet arrives, AFD randomly selects a packet in the shad-
ow buffer for replacement.

New draw

New draw New draw

Flow 2
will be used for the
next two updates

Flow 3
will be used for the

next one update

AFD-FT stops here/AFD-NFT continues

Flow 1

Flow 2

Flow 3

1

6

5

Flow 1

Flow 2

Flow 3

2 packets

6 packets

4 packets

Flow 1

Flow 2

Flow 3

2

5

5

Flow 1

Flow 2

Flow 3

2

6

4

Arrival of a flow 3 packet

If flow 1

If flow 2

If flow 3

Figure 4. AFD-FT and AFD-NFT designs. When a new packet arrives at the
shadow buffer, the algorithms update the flow tables.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:23 from IEEE Xplore. Restrictions apply.

ing approximately mi of flow i ’s packets after
b updates. By the law of large numbers, we
can prove that AFD-NFT’s performance, on
average, is the same as AFD-SB’s. We outline
the proof as follows:

• Each flow has the same chance of being
chosen for set S, and the probability, ps ,
is sN −1.

• A flow’s average packet count equals

Assuming s << N, the average total pack-
et count in chosen set S is bsN−1. Thus, the
total packets to be replaced are absN−1. To
replace b packets, we need to draw

sets.
• Given a set S and flow i(∈ S), there are

on average

flow i packets to be replaced.
• When we combine the above three argu-

ments, after b updates, the average num-
ber of flow i packets replaced equals

which matches AFD-SB’s behavior.

Simulation results
We evaluate AFD-NFT’s performance in

several scenarios and compare it to AFD-SB
and AFD-FT. Figure 5 depicts our simulation
topology. Unless otherwise stated, the laten-
cies at the access links are 2 ms, and the laten-
cy at the congested link is 20 ms. In all the
experiments, b = 1,000, a = 0.06, and s = 5.

Performance improvement
Figure 6 compares the performance of AFD-

SB, AFD-FT, and AFD-NFT for a simulation
run in which five constant bit rate (CBR) flow
groups of 10 flows each compete for the con-
gested link bandwidth of 10 Mbps. The send-
ing rates for the groups are 50 Kbps, 100 Kbps,
200 Kbps, 400 Kbps, and 600 Kbps. Results
show that AFD-NFT can mimic AFD-SB’s
performance by providing each flow its fair
share. AFD-FT penalizes the aggressive flows
by limiting their throughput to be under their
fair share.

Although the performance penalty is mild
in this scenario, AFD-FT can severely punish
aggressive flows. Table 1 lists the simulation’s
flow table access statistics for pS, the probabil-

NP

s
N

N
as

am mi i i= × × = ,

NPS
m

m
u

m

m
a m am

i
i

jj S

i

jj S

j
j S

i

= × =

× =

∈

∈ ∈

∑

∑ ∑

N

b
absN

N
ass = =−1

m

N
b
N

ii

i N

=

=∑
=1 .

40

HOT INTERCONNECTS 10

IEEE MICRO

Traffic sources Traffic sinks
10

Mbps

S(n)

S(n–1)

S(0)

S(1)

R(n)

R(n–1)

R(0)

R(1)
100 Mbps

R
ou

te
r

A

R
ou

te
r

B
Figure 5. Basic simulation topology used in our evaluations.

0
50

100
150
200
250
300
350
400
450
500
550
600
650

Flow ID

T
hr

ou
gh

pu
t (

K
bp

s)

0 10 20 30 40 50

Fair share
Flow arrival rate
AFD-FT
AFD-SB
AFD-NFT

Figure 6. Offered load and throughput for 50 CBR flows using the three
AFD designs.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:23 from IEEE Xplore. Restrictions apply.

ity of a flow being in a set; NPSi , the average
number of flow i ’s packets replaced; NPi , the
average number of flow i ’s packets replaced
after b updates; and Ns , the average number of
sets drawn after b updates. Because the variance
between individual flows is very small, as Fig-
ure 6 shows, we average the statistical data with-
in the 10 flows in each group to more easily
present them. Clearly, the data obtained from
the simulation closely agrees with predictions
from our analysis.

We next evaluate the performance of AFD
designs in the presence of an on-off source. In
this setup, an on-off source shares the congest-
ed link with 35 TCP flows, where Rfair equals
278 Kbps. The bursty source sends at the access
link speed (100 Mbps) for a very short period,
ton, and then is idle for time toff . Its average send-
ing rate is 100 Mbps × ton(ton + toff)−1. We plot
only the bursty source throughput in Figure 7
because it shows the largest discrepancies
among the three AFD algorithms. The TCP
flows use the remaining link bandwidth; dif-
ferences among those flows are small. In the
figure, the leftmost bars in each grouping rep-
resent the on-off source throughput when its
average sending rate is only half of Rfair, in which
case all three algorithms allocate the bandwidth
fairly—that is, they supply the flow its request
bandwidth. As the plot shows, however, as the
on-off flow becomes burstier and sends above
2Rfair, AFD-FT starts penalizing it. The bursti-
er the flow, the more severe the penalty. Con-
versely, AFD-SB and AFD-NFT do not
penalize flows for burstiness.

Figure 8 (next page) represents a simulation
in which the traffic mix is one user datagram
protocol (UDP) source sharing the link with
seven groups (five flows per group) of TCP
flows with different congestion control meth-

ods. For generalized window control mecha-
nisms, the window increase has a form of w +
c1w−k, and the decrease of a form w − c2wl,10

where k, l, and w are parameters defined in the
TCP algorithm. The seven groups in the sim-
ulation have different values of c1, c2, k, l, and
RTTs, as tabulated in Table 2. The normal TCP
flow has the form c1= 1.0, c2 = 0.5, k = 1.0, and
l = 1.0). In Figure 8a, the rightmost bars in each
grouping represent the throughput of the more
aggressive UDP flow under the different algo-
rithms. Results show once again that the AFD-
NFT design can mimic the performance of
AFD-SB while AFD-FT fails to do so.

Comparable performance
Removing the UDP flow from the simula-

tion leaves only TCP flows with various con-

41JANUARY–FEBRUARY 2003

Table 1. Flow table access results from both theoretical analysis and actual simulation data.

NPSi (average NPi (average Ns

pS no. of packets) no. of packets) (no. of sets)
Flow group Simulation Simulation Simulation Simulation

ID sN −1 data ami data mi data N(as)−1 data
0 0.1 0.098 0.222 0.207 3.70 3.63
1 0.1 0.100 0.444 0.411 7.41 7.42
2 0.1 0.100 0.888 0.808 14.81 14.82 180 167
3 0.1 0.100 1.778 1.646 29.63 29.66
4 0.1 0.100 2.667 2.453 44.44 44.53

0

50

100

150

200

250

300

350

400
T

hr
ou

gh
pu

t (
K

bp
s)

AFD-FT AFD-SB AFD-NFT

0.5 × Rfair

1 × Rfair

2 × Rfair

4 × Rfair

8 × Rfair

Figure 7. Performance of the three AFD algorithms in the presence of a
bursty on-off source. As a flow becomes burstier, AFD-FT begins to penal-
ize it, while AFD-SB and AFD-NFT do not.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:23 from IEEE Xplore. Restrictions apply.

gestion parameters to compete against each
other. As Figure 8b shows, AFD-NFT per-
forms as well as AFD-FT, and all three AFD
designs allocate bandwidth fairly.

AFD behaves reasonably well when flows
with different RTTs share a link.9 To ensure

that AFD-NFT’s performance is not worse,
we construct another experiment. In this sim-
ulation, we separate flows into four groups
with 10 flows in each group. The RTTs (prop-
agation delay only) are 37.5 ms, 75 ms, 112.5
ms, and 150 ms. Figure 9 shows that AFD-
NFT’s performance is similar to that of AFD-
SB and AFD-FT. Although some discrepancies
among flows with different RTTs exist, they
are not significant.

Memory requirement
As we have shown, AFD-NFT provides rea-

sonably fair bandwidth allocation, and all
operations on the forwarding path are O(1).
Thus, the main question regarding whether
AFD-NFT is practical lies in its memory
requirement. Because set S is small (usually
fewer than 10 flows), registers can easily store
the set’s flow IDs. The flow table, however,
requires some memory buffering.

The flow table size relates directly to num-
ber of flows N in the shadow buffer. In the
traces we have seen,9 N is typically less than
one-fourth of b, the number of packets in the
logical shadow buffer. We also find that to
achieve good performance, b should be rough-
ly 10rfair

−1R. Hence, N equals 2.5rfair
−1R. It is

difficult to estimate rfair on a typical Internet
link. A conservative estimate assumes rfair

equals 56 Kbps, the slow telephone modem
speed. Then, for a 1-Gbps link, it is simple to
obtain that N is on the order of a few thou-
sand. Therefore, we can easily implement the
flow table using a standard hash table or
CAM. The memory overhead is limited.

Fair bandwidth allocation designs differ in
the extent to which they carefully manage

bandwidth allocation. The extremes of the
spectrum are complete fairness (FQ) on one
end and unmanaged allocation (RED) on the
other. We believe that Internet flows will use a
wide variety of congestion-control algorithms,
which might not be TCP compatible. Routers
will thus frequently need to allocate bandwidth
to flows. We designed AFD for such a scenario.
AFD approximates FQ’s performance, but
drastically reduces its state requirement. This
and other data suggest that AFD-NFT will
provide a good approximation to fair band-
width allocation in a wide range of scenarios,
typically providing bandwidth allocations

42

HOT INTERCONNECTS 10

IEEE MICRO

0

100

200

300

400

T
hr

ou
gh

pu
t (

K
bp

s)

AFD-FT AFD-SB AFD-NFT(a)

(b)

TCP flow group 0
TCP flow group 1
TCP flow group 2
TCP flow group 3

TCP flow group 4
TCP flow group 5
TCP flow group 6
UDP flow

0

100

200

300

400

T
hr

ou
gh

pu
t (

K
bp

s)

AFD-FT AFD-SB AFD-NFT

Figure 8. Mixed TCP traffic with and without a UDP flow. Under AFD-FT, the
UDP traffic is not treated fairly (a). When TCP flows compete only against
each other, however, all three AFD algorithms allocate bandwidth fairly (b).

Table 2. Mixed TCP traffic configuration.

Flow group ID c1 c2 K L RTT (ms)
0 1.00 0.90 1.00 1.00 25
1 0.75 0.31 1.00 1.00 25
2 2.00 0.50 1.00 1.00 25
3 1.50 1.00 2.00 0.00 25
4 1.00 0.50 0.00 1.00 25
5 1.00 0.50 1.00 1.00 25
6 1.00 0.50 1.00 1.00 100

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:23 from IEEE Xplore. Restrictions apply.

within ±15 percent of the fair share. MICRO

References
1. S. Floyd and K. Fall, “Promoting the Use of

End-to-End Congestion Control in the Inter-
net,” IEEE/ACM Trans. Networking, no. 4,
Aug. 1999, pp. 458-472.

2. B. Braden et al., “Recommendations on
Queue Management and Congestion Avoid-
ance in the Internet,” Internet Eng. Task
Force RFC 2309 (informational), Apr. 1998;
www.ietf.org/rfc/rfc2309.txt.

3. A. Demers, S. Keshav, and S. Shenker,
“Analysis and Simulation of a Fair Queuing
Algorithm,” J. Internetworking Research
and Experience, Oct. 1990, pp. 3-26.

4. P. McKenny, “Stochastic Fairness Queu-
ing,” Proc. Infocom 1990, IEEE Press, 1990,
pp. 733-740.

5. I. Stoica, S. Shenker, and H. Zhang, “Core-
Stateless Fair Queueing: Achieving Approxi-
mately Fair Bandwidth Allocations in
High-Speed Networks,” Proc. ACM SIG-
Comm 1998, ACM Press, 1998, pp. 118-130.

6. D. Lin and R. Morris, “Dynamics of Random
Early Detection,” Proc. ACM SIGComm
1997, ACM Press, 1997, pp. 127-137.

7. W. Feng et al., “Stochastic Fair Blue: A
Queue Management Algorithm for Enforc-
ing Fairness,” Proc. Infocom 2001, IEEE
Press, 2001, pp. 1520-1529.

8. S. Floyd and V. Jacobson, “Random Early
Detection Gateways for Congestion Avoid-
ance,” IEEE/ACM Trans. Networking, vol. 1,
no. 4, Aug. 1993, pp. 397-413.

9. R. Pan et al., “Approximate Fairness through
Differential Dropping,” to appear in Comput-
er Comm. Rev., vol. 33, no. 1, Jan. 2003.

10. D. Bansal and H. Balakrishnan, “Binomial Con-
gestion Control Algorithms,” Proc. Infocom
2001, IEEE Press, 2001, pp. 631-640.

Rong Pan is a research scientist at Stanford
University. Her research interests include con-
gestion control, active queue management,
TCP performance, and efficient network sim-
ulation. Pan has a PhD in electrical engineer-
ing from Stanford University.

Balaji Prabhakar is an assistant professor of
electrical engineering and computer science at
Stanford University. His research interests
include network algorithms, wireless networks,

Web caching, network pricing, information
theory, and stochastic network theory. Prab-
hakar has a PhD from the University of Cali-
fornia at Los Angeles.

Lee Breslau heads the Internetworking Research
Department AT&T Labs—Research in Menlo
Park, California. His research interests include
packet scheduling, real-time service, network
measurement, and routing. Breslau has a PhD
from the University of Southern California.

Scott Shenker is group leader at the Interna-
tional Computer Science Institute’s Center for
Internet Research. His research interests range
from computer performance modeling and
computer networks to game theory and eco-
nomics. Shenker has a PhD from the Univer-
sity of Chicago.

Direct questions and comments about this
article to Rong Pan, Stanford University,
Packard Rm. 270, 350 Serra Mall, Stanford,
CA 94305-9510; rong@stanford.edu.

For further information on this or any other
computing topic, visit our Digital Library at
http://computer.org/publications/dlib.

43JANUARY–FEBRUARY 2003

0

50

100

150

200

250

300

T
hr

ou
gh

pu
t (

K
bp

s)

37.5 ms
75 ms
112.5 ms
150 ms

AFD-FT AFD-SB AFD-NFT

Figure 9. Four TCP flow groups with different RTTs (maximum is 150 ms).
All three algorithms perform similarly.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:23 from IEEE Xplore. Restrictions apply.

