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Abstract—The paper develops algorithms for minimizing the energy re-
quired to transmit packets in a wireless environment. It is motivated by
the following observation: In many channel coding schemes it is possible to
significantly lower the transmission energy by transmitting packets over a
long period of time.

Based on this observation, we show that for a variety of scenarios the of-
fline energy-efficient transmission scheduling problem reduces to a convex
optimization problem. Unlike for the special case of a single transmitter-
receiver pair studied in [5], the problem does not, in general, admit a closed-
form solution when there are multiple users. By exploiting the special struc-
ture of the problem, however, we are able to devise energy-efficient trans-
mission schedules. For the downlink channel, with a single transmitter and
multiple receivers, we devise an iterative algorithm, called MoveRight, that
yields the optimal offline schedule. The MoveRight algorithm also opti-
mally solves the downlink problem with additional constraints imposed by
packet deadlines and finite transmit buffers. For the uplink (or multiaccess)
problem MoveRight optimally determines the offline time-sharing sched-
ule. A very efficient online algorithm, called MoveRightExpress, that uses
a surprisingly small look-ahead buffer is proposed and is shown to perfom
competitively with the optimal offline schedule in terms of energy efficiency
and delay.

I. INTRODUCTION AND PROBLEM FORMULATION

The energy-efficiency of computing, signal processing and
communication devices is key to the widespread deployment
of wireless networks, especially of sensor and mobile ad hoc
networks. On the networking side, several recent papers have
proposed methods for conserving energy. For example, [1] pro-
poses a randomized algorithm that allows nodes in a dense wire-
less network to switch between on and sleep modes so as to
trade-off topology maintainence with energy conservation, [4]
proposes a method for empirically measuring the energy con-
sumed by a node in an ad hoc network by monitoring its power
consumption, [5] considers the problem of minimizing the trans-
mission energy of a wireless node and presents “lazy” schedules
that trade-off delay for energy; and, [9] studies the problem of
constructing energy-efficient multicast and broadcast trees.

This paper studies the problem of minimizing the energy re-
quired to transmit packets over a wireless network based on the
following observation [5]: In many channel coding schemes,
lowering transmission power and increasing the duration of
transmission leads to a significant reduction in transmission en-
ergy. In particular, it was observed that for a given channel cod-
ing scheme if w(τ) is the energy expended for transmitting a
packet over τ units of time, then w(τ) is a non-negative, mono-
tonically decreasing, and strictly convex function of τ .

Before we introduce the minimum-energy scheduling prob-
lem, we briefly discuss it within the larger context of packet
transmission protocols in wireless networks. Reducing energy
consumption by lowering transmission power (and thus increas-
ing transmission time) also reduces interference to other nodes,
resulting in an increase in the overall throughput of the network.
But, as noted in several previous papers ([10] is a recent refer-
ence), power control requires the participation of all nodes in
the network: Nodes that reduce transmission power unilaterally
risk suffering a high interference from nodes that do not. Thus,
a network-wide protocol is needed to ensure that users adhere
to the physical and link layer algorithms employed for energy
minimization or for interference mitigation. While considerable
research has been devoted to the design of good power control
algorithms for dealing with interference, energy minimization is
a more recent problem motivated by the advent of ad hoc and
sensor networks. It is the goal of this paper to develop algo-
rithms for energy-efficient scheduling in a wireless environment,
building upon the approach taken in [5].

A. Minimum-Energy Transmission Scheduling Problem

For concreteness, consider the downlink channel in a wireless
network involving a single transmitter and multiple receivers.
Suppose that M packets arrive at the transmitter at random times
ti in the interval [0, T ] destined for one of n receivers. The node
is required to transmit all M packets within the interval [0, T ]1.
Since the transmitter knows the destination of each packet, we
may assume, without loss of generality, that the energy required
to transmit packet i over τ units of time is given by the energy
function wi(τ). The wi(τ) are assumed to satisfy the following
conditions:

1. wi(τ) ≥ 0.
2. wi(τ) is monotonically decreasing in τ .
3. wi(τ) is strictly convex in τ .
4. wi(τ) is continuously differentiable and its derivative, ẇi(τ)
tends to −∞ as τ tends to 0.

The first three conditions have been justified in [5] by consider-
ing some channel coding schemes. The last condition is a tech-
nical condition introduced here for ease of exposition. It is not

1The imposition of a strict deadline, T , by which all transmissions had to
terminate was intended to capture several realistic wireless scenarios (see [5] for
further details).
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required for the proofs, since strict convexity implies the exis-
tence of right and left derivatives and one can work with these.
The last condition is also not artificial since it is satisfied by sev-
eral channel coding schemes. For example, optimal coding over
an additive white Gaussian noise (AWGN) channel with noise
power N yields the energy function τN(2 2B

τ − 1) for a B-bit
packet, which clearly satisfies condition 4.

Let si be the start time of the ith packet’s transmission and
τi be its transmission duration. The causality constraint si ≥ ti
ensures that the transmission of a packet cannot begin before
its arrival time. Even though it is not necessary for minimizing
energy that packets be transmitted in the order of their arrivals,
it is easy to see that any set of transmission times that satisfy
the causality constraints and the overall deadline constraint T
for some packet transmission order also satifies them when the
packets are transmitted in the order of their arrivals. Thus, with-
out loss of generality, we can assume that the si are monoton-
ically increasing in i. With this assumption the deadline con-
straint requires that sM + τM ≤ T . A vector of transmission
times and transmission duration pairs, {(si, τi), i = 1, ...,M}
that satisfies the above conditions will be called a feasible sched-
ule. We are now ready to state the offline energy minimization
problem.

Given:

a. a vector of packet arrival times {ti, i = 1, ...,M}, where
t1 = 0, ti < ti+1, and tM < T , and
b. energy functions wi(τ) which, for each i ∈ {1, ...,M}, sat-
isfy the hypotheses 1-3 mentioned above;

find a feasible schedule so as to minimize the total transmission
energy:

∑M
i=1 wi(τi).

We note that the convexity of the wi(τ) makes this a convex
optimization problem with linear constraints. For the special
case of a single receiver, the wi(·)s are identical, say equal to
the function w(·). In this case, the problem was solved explicitly
in [5], yielding the following optimal offline schedule:

τ∗
i = mj if kj−1 < i ≤ kj , (1)

where mj and kj are obtained recursively as follows. Let k0 =
0, and define

m1 = max
k∈{1,...,M}

{ tk+1

k
} and

k1 = max{k :
tk+1

k
= m1}.

For 1 ≤ j ≤ J , let

mj+1 = max
k∈{1,...,M−kj}

{
tkj+k+1 − tkj+1

k
} and

kj+1 = kj + max
{

k :
tkj+k+1 − tkj+1

k
= mj+1

}

,

where J = min{j : kj = M}.

Unfortunately, for the general case involving multiple users,
the convex energy minimization problem does not admit such an

explicit solution. For example, in the downlink problem there is
a significant difference: the wi(·)s are not all identical. This is
because scheduling must be simulatneously done for the differ-
ent channels between the transmitter and each receiver. These
channels could possibly give rise to different packet transmis-
sion energy functions. For example, this occurs when the re-
ceivers are not equidistant from the transmitter. Since signal
attenuation depends on the distance between the transmitter and
each receiver, the energy required to transmit a packet reliably
in time τ will be different for the different receivers.

This makes it impossible, in general, to obtain explicit solu-
tions for the optimal offline minimum-energy schedule in terms
of the {ti}s as was possible before. Of course, one could use
general convex optimization techniques to solve the above prob-
lem numerically. However, we note that the problem has special
structure, making it amenable to special methods. In particular,
its cost function is the sum of several convex energy functions,
allowing us to perform local optimizations efficiently. Further-
more, the individual energy functions decrease monotonically,
allowing local optimizations to be one-sided – namely, to the
right. These special features are exploited in developing the
MoveRight algorithm, which finds the optimal schedule effi-
ciently.

The MoveRight algorithm also solves several other convex
optimization problems related to determining offline energy ef-
ficient schedules in wireless networks. These include the fol-
lowing scenarios:

a. The downlink problem.
b. The optimal time-sharing schedule for the uplink multiac-
cess 2 problem.
c. All of the above scenarios when packets have individual
deadlines before which they must be transmitted. The dead-
lines may be different for each packet, but must satisfy some
conditions as stated later.
d. All of the above scenarios when the transmit buffer has a
finite size of B.

Additionally, by employing a look-ahead buffer, the optimal
offline schedule determined by the MoveRight algorithm can be
used for online implementation. In this case, we show that a
much faster version of the MoveRight algorithm, which we call
MoveRightExpress, can be used to schedule the buffered pack-
ets. Of course, use of the look-ahead buffer would impose ad-
ditional delays, but energy-efficiency requires one to trade-off
an increase in delay for a decrease in energy consumption. The
trade-off would be worth it if a small increase in delay leads to
a significant reduction in energy. Previous work [5] shows that
this is indeed the case for the single transmitter-receiver pair. In
this paper we find that a small amount of look-ahead can lead
to a substantial reduction in energy in the scenarios mentioned
above.

2Recall that the uplink problem involves multiple users transmitting to one
receiver using multiple access schemes. Information theory [2] tells us that
time-sharing is not optimal for the general multiple access problem. We may
nevertheless seek the optimal time-sharing schedule, similar to other work in
the networking literature on the multiple access channel [6].

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1774 IEEE INFOCOM 2002

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:34 from IEEE Xplore.  Restrictions apply. 



B. Organization of the paper

Section II develops the MoveRight algorithm for optimally
solving the downlink offline transmission scheduling problem,
and contains the main results of the paper. Section II-A pro-
vides the proof of optimality and Section II-B discusses the al-
gorithm’s worst-case complexity, implementation issues, and its
fairness properties. Section II-C shows that MoveRight can also
find the optimal offline schedule for scenarios involving dead-
lines for individual packets and finite transmit buffers. Section
III discusses offline transmission scheduling for the uplink prob-
lem. Online scheduling using look-ahead buffers is presented in
Section IV.

II. AN OPTIMAL ALGORITHM FOR THE OFFLINE

DOWNLINK SCHEDULING PROBLEM

We develop the MoveRight algorithm for determining the op-
timal offline schedule for the downlink problem. After intro-
ducing the algorithm, establishing its optimality properties and
analyzing its complexity, we shall show how it applies to other
situations of interest.

Using notation introduced in the previous section, consider
the problem of transmitting M packets that arrive at times
{ti, i = 1, ...,M} during the period [0, T ], and as before, we
assume t1 = 0. For notational convenience, set tM+1 = T .
Let si be the time the ith packet starts transmitting and let τi

be the duration of its transmission. A schedule is feasible if it
is causal: si ≥ ti for every i; and all packets are transmitted
within the interval [0, T ]: τ1 + · · · + τM ≤ T. It is easy to see
that τ1 + · · ·+ τM = T is a necessary condition for the optimal-
ity of the transmission times {τi}. Otherwise, we may simply
increase some of the τi and reduce total energy (observe that
increasing transmission times does not hurt the causality con-
straint). This reduces the causality constraint for all schedules
which satisfy τ1 + · · · + τM = T to

∑j
i=1 τi ≥ tj+1.

We are required to find a feasible schedule so as to minimize
the total transmission energy:

∑M
i=1 wi(τi).

The MoveRight Algorithm: The main idea of the MoveRight
algorithm is to iteratively move the starting times of packet
transmissions to the right, one packet at a time, so that each
move locally optimizes the overall energy function. As we shall
see, this iterative local optimization leads to the globally opti-
mum solution.

The algorithm proceeds iteratively. Initially, the start-times
of all packets are set equal to their arrival times; that is, s0

i =
ti, i = 1, . . . , M , and we set the transmission duration of packet
i to τ0

i = s0
i+1 − s0

i . Now consider the first two packets. Keep-
ing τ0

1 + τ0
2 fixed, we move s0

2 to s1
2 (see Figure 1), where

s1
2 ∈ [s0

1, s
0
3] is the point which minimizes the sum of the trans-

mission energies of the first two packets. Note that s1
2 ≥ s0

2 nec-
essarily, and therefore the start-time of packet 2 can only move
to the right. In this simple case it is easy to see that leftward
movements of the start time of packet 2 would violate the causal-
ity constraint, and are therefore not allowed. We prove that, in
general, leftward movements are not necessary, and hence name

the algorithm MoveRight.

Continuing, set τ1
1 to be the transmission time of the first

packet obtained after optimally increasing s0
2 as above, and reset

τ0
2 by decreasing it by an amount τ1

1 − τ0
1 .

Now consider the second and third packets. Again keeping
τ0
2 + τ0

3 fixed, increase s0
3 to s1

3 optimally, and hence obtain τ1
2 .

Reset τ0
3 by reducing it by an amount τ1

2 − τ0
2 , and proceed to

obtain τ1
i , for i = 1, ...,M . This completes the first pass of the

algorithm. Continue to make additional passes and terminate the
algorithm after pass K, where

K = min{k : τk
i = τk−1

i , for all i, i = 1, ...,M}.

A pseudo-code for the algorithm is given below.

k = 0;

flag = 0;

for i = 1:M

τ0
i = si+1 − si;

end

while flag==0

k=k+1;

for i=1:M-1

[τk
i , τk

i+1] =best([τk−1
i , τk−1

i+1 , i, sk
i ]);

end

if τk == τk−1

flag=1;

end

end

Here best([τk−1
i , τk−1

i+1 , i, sk
i ]) returns the optimal transmission

durations when the total transmission duration is τk−1
i + τk−1

i+1
and the energy functions are wi(·) and wi+1(·). However, best
also keeps in mind the causality constraint that sk

i + τk
i ≥ tk+1

i .

Arrival times

Pass 1

Pass 2

t2 t3

s1
2 s1

3

s2
2 s2

3

T0

Fig. 1. Illustration of the MoveRight algorithm for 3 packets.

A. Proof of optimality

We first establish the following lemma in the absence of
causality constraints.

Lemma 1: Consider two packets, 1 and 2, to be transmitted
in the time interval [s, t]. Packet 1 is to begin its transmission at
time s, while packet 2 is to end its transmission at time t. Let w1

and w2 be the transmission energy functions for packets 1 and
2, respectively, and assume that they satisfy conditions 1-4, then
the following hold.

1. The optimal transmission times are unique.

2. Let ŝ be the start time of the second packet’s transmission
in the optimal schedule. Then ŝ increases when s increases,

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1775 IEEE INFOCOM 2002

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:34 from IEEE Xplore.  Restrictions apply. 



holding t fixed. The same is also true if t increases and s is held
fixed, and also if both s and t increase.

3. If the total time, t − s, decreases (increases) then the trans-
mission durations of both packets decrease (increase, respec-
tively).

Proof Let τ1 and τ2 be any transmission transmission schedule
such that τ1 + τ2 = t − s.

1. Minimizing the strictly convex function w1(τ1)+w2(t−s−
τ1) over 0 ≤ τ1 ≤ t − s will yield the optimal schedule, which
will obviously be unique given the strict convexity.

2. Consider the case when s increases to s′ and t is fixed. Let
τopt
1 and τ∗

1 denote the optimal transmission times for the first
packet over intervals [s, t] and [s′, t], respectively. Note that
ẇ1(τopt

1 ) − ẇ2(t − s − τopt
1 ) = 0, where ẇ denotes the first

derivative.
Because the energy functions are strictly convex, their deriva-
tives are strictly increasing. Therefore, since s < s′, it follows
that ẇ1(τopt

1 )−ẇ2(t−s′−τopt
1 ) > ẇ1(τopt

1 )−ẇ2(t−s−τopt
1 ) =

0. Similarly, ẇ1(τopt
1 − (s′ − s)) − ẇ2(t − s − τopt

1 ) < 0.
We wish to find τ so that ẇ1(τ) − ẇ2(t − s′ − τ) = 0. The
above two statements and the uniqueness of the optimal value
allow us to conclude that τopt

1 − (s′ − s) < τ∗
1 < τopt

1 , or that
τopt
1 + s < τ∗

1 + s′. This proves the claim.
The case when t increases can be established similarly. The last
case can be handled by first increasing s and then increasing t.

3. Observe that the optimal transmission durations are just a
function of total time available, t − s, and do not depend on
the absolute values of s and t. Hence a decrease in t − s can
be made equivalent to increasing s to s′, say, while keeping t
fixed. From above we have τopt

1 − (s′ − s) < τ∗
1 < τopt

1 .
Since τ∗

1 < τopt
1 , we have that the transmission duration of the

first packet decreases. For the second packet we need to show
that t − s − τopt

1 > t − s′ − τ∗
1 . This readily follows from

τopt
1 − (s′ − s) < τ∗

1 . The case when t − s increases can be
handled similarly.

We now introduce causality constraints to Lemma 1, which will
be needed in the proof of Theorem 1. Note that with no causal-
ity constraints, the start-times are unconstrained and the energy-
optimal start time of packet 2 can be to the left of (or earlier
than) its arrival time. Of course, this can violate the causality
constraint. However, it is not hard to see that, in this case, the
optimal start-time for packet 2 is in fact equal to its arrival time.
Thus, part 1 of Lemma 1 holds with causality constraints. Part
2 needs to be modified to:
2. Let ŝ be the start time of the second packet’s transmission
in the optimal schedule. Then ŝ does not decrease when s in-
creases, holding t fixed. The same is also true if t increases and
s is held fixed, and also if both s and t increase.

Now suppose there are M packets and let τk
1 , . . . , τk

M be their
transmission durations after the kth pass of the MoveRight al-
gorithm. Let sk

1 = 0, sk
i =

∑i−1
j=1 τk

j for i = 2, 3, ...,M and
let sk

M+1 = T . Let τopt
1 , . . . , τopt

M be the optimal transmis-
sion times, which exist because of the convexity of the problem
and the compactness of the search space. Let sopt

1 = 0, sopt
i =

∑i−1
j=1 τopt

j for i = 2, 3, ...,M and let sopt
M+1 = T =

∑M
j=1 τopt

j .

The main idea of the proof is to first show that, for each i,
sk

i is non-decreasing in k and that it is bounded above by sopt
i .

Therefore each sk
i ↑ s∞i . We finish by establishing that s∞i =

sopt
i , for every i.

Theorem 1: Let sk
i , s∞i , sopt

i be as defined before. Then
1. sk

i ≤ sk+1
i .

2. sk
i ≤ sopt

i .
3. s∞i = sopt

i .

Proof

1. Recall that the algorithm works in passes: For each fixed
k, the algorithm determines sk

i by increasing i from 1 through
M . Because of the causality constraint, it follows trivially that
s0

i ≤ s1
i for each i, i = 1, 2, ...,M (recall that s0

i = ti).
Suppose that i′ ≥ 1 and k′ ≥ 1 are the first time that there is a
violation; that is, sk′

i′ > sk′+1
i′ . Since this is the first instance, we

have that sk′

i′−1 ≤ sk′+1
i′−1 and sk′−1

i′+1 ≤ sk′

i′+1.

Consider the intervals [sk′

i′−1, s
k′−1
i′+1 ] and [sk′+1

i′−1 , sk′

i′+1]. The first
interval determined the boundaries within which the MoveRight
algorithm would place sk′

i′ , the start-time of packet i′ in the k′th
pass. Likewise the second interval determines the boundaries
for placing the start-time of packet i′ in pass k′ + 1. The in-
equalities in the previous paragraph imply that each boundary
point of the second interval is to the right of the corresponding
boundary point in the fi rst interval. Given this, the modified
version of part 2 of Lemma 1 implies sk′

i′ ≤ sk′+1
i′ . This con-

tradicts the assumption sk′

i′ > sk′+1
i′ and hence property (1) will

always hold.

2. As above suppose that i′ ≥ 1 and k′ ≥ 1 are the first time
that there is a violation; that is, sk′

i′ > sopt
i′ . (For reasons as

above k′ = 0 will not violate.)
Again, as before, we obtain sk′

i′−1 ≤ sopt
i′−1 and sk′−1

i′+1 ≤ sopt
i′+1.

Notice that the boundary points of the interval [sk′

i′−1, s
k′−1
i′+1 ]

are each to the left of the corresponding boundary points of
[sopt

i′−1, s
opt
i′+1]. Again by part 2 Lemma 1 we must have sk′

i′ ≤
sopt

i′ . This contradiction shows there can be no violation.

3. Let τ∞
i = limk→∞ τk

i = s∞i+1 − s∞i . Note that the vectors
{τ∞

i } and {τopt
i } are fixed points for the MoveRight algorithm:

passing them once through the algorithm does not alter any en-
try. This is true of {τ∞

i }, by definition. Since alterations by the
MoveRight algorithm only result in energy reduction, the opti-
mality of {τopt

i } ensures that it will be a fixed point. From part
(2), we have s∞i ≤ sopt

i , for all i = 1, . . . , M + 1, with equality
holding at both the boundaries. Also, from s∞M+1 = sopt

M+1, we
have

∑M
i=1 τ∞

i = T =
∑M

i=1 τopt
i .

We will argue by contradiction and hence let us assume that j =
min{i ≥ 1 : τ∞

i < τopt
i , τ∞

i+1 ≥ τopt
i+1}. It is easy to see from the

definition of j that, s∞j+1 < sopt
j+1. Therefore, it follows from the

feasibilty of s∞j+1 that the causality constraint did not play any
role in the placement of sopt

j+1. The same however cannot be said
of s∞j+1. That is, the pairwise optimization of the transmission
durations of packets j and j + 1 could have yielded a start-time
of s∗j+1 for packet j + 1. However, packet j + 1 was forced to
begin transmission only at s∞j+1, due to causality constraints. It
follows that s∗j+1 ≤ s∞j+1.
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Let τ∗
j = s∗j+1 − s∞j and τ∗

j+1 = s∞j+2 − s∗j+1. We have τ∗
j ≤

τ∞
j < τopt

j and τ∗
j+1 ≥ τ∞

j+1 ≥ τopt
j+1. Therefore,

τ∗
j < τopt

j and τ∗
j+1 ≥ τopt

j+1. (2)

We will now obtain the contradiction. First, suppose τ∗
j+1 +

τ∗
j < τopt

j+1+τopt
j . In this case from part 3 of Lemma 1 it follows

that τ∗
j < τopt

j and τ∗
j+1 < τopt

j+1. Next suppose τ∗
j+1 + τ∗

j >

τopt
j+1 + τopt

j . Then, by exactly similar arguments, it follows that
τ∗
j > τopt

j and τ∗
j+1 > τopt

j+1. Finally, suppose τ∗
j+1 + τ∗

j =
τopt
j+1 + τopt

j . Then, by part 1 of Lemma 1, it follows that τ∗
j =

τopt
j and τ∗

j+1 = τopt
j+1. In all three cases we have contradicted

equation (2) and proved the theorem.

B. Properties of the MoveRight Algorithm

1. An ordering on arrival times: Because the algorithm moves
start-times monotonically to the right, the worst-case inputs
(packet arrival times) are easily identifiable in the following
sense. Consider two different sets of arrival times, {ti} and
{t′i}, whose optimal schedules are identical. If ti ≤ t′i, for ev-
ery i, and sk

i and s′ki are the corresponding start-times after the
kth pass of the MoveRight algorithm, then sk

i ≤ s′ki , for every
i and k. Therefore, when the MoveRight algorithm converges
for the first input, it would have automatically converged for the
second. We may therefore say that {ti} is worse than {t′i}. This
ordering can be used to determine the complexity of the algo-
rithm, as described next.

2. Computational complexity: From part 2 of Theorem 1 we
know that the MoveRight algorithm does not change the start-
times of packets which are restricted by the causality constraint
under the optimal schedule; that is, packets i such that sopt

i = ti.
Call these the “immovable packets”. The immovable packets
have an interesting decoupling property: movements of packets
to their left do not influence movements of packets to their right.
Thus, the packets that move can be broken down into bands at
whose end points there are immovable packets.

The rate of convergence of the MoveRight algorithm is deter-
mined by the rate at which packets in the slowest moving band
will converge to their optimal positions. So, how fast does the
slowest-moving band converge?

Observe that the start-times of packets within each band are
not affected by the causality constraint. Therefore, their optimal
start-times will be the same as determined by the MoveRight al-
gorithm, assuming that the movable packets within a band all
arrived at the beginning of the band! But, by the previous dis-
cussion on the ordering of arrival times, this last set of arrival
times represents the worst-case as far as the convergence of the
MoveRight algorithm is concerned.

Although the worst-case inputs are identified, without know-
ing the explicit form of the energy functions, it is difficult to
bound the worst-case number of iterations of the MoveRight al-
gorithm. However, assuming the energy functions are identical
(the single receiver case), yields the following lemma, whose
proof is presented in the Appendix.

Lemma 2: Suppose M packets with identical energy func-
tions arrive at time 0 destined for a single receiver. Let sk

i be the
start-time of the ith packet after the kth pass of the MoveRight
algorithm, and let ||sk − sopt|| = maxi |sk

i − sopt
i |. Then, given

an ε > 0, ||sk − sopt|| < ε for k ∼ O
(

log(
√

M/ε)
log(1/|λM |)

)

, where λM

is the largest eigenvalue of the matrix exhibited in the Appendix.

Numerical evaluation of the above bound for values of M up to
1000 suggests growth rate of M1.7 passes.

Simulation shows that the run time and number of iterations
taken by the MoveRight algorithm are comparable (in terms of
orders) when the energy functions are all identical, as compared
with the case when they are distinct.

We considered 700 packets arriving at time 0, to be sched-
uled for transmission during [0, 1000]. Table I shows the num-
ber of moves, passes and the run-time of MoveRight when all
700 packets have equal energy functions. The algorithm was
terminated when the total energy was within a certain percent-
age, denoted by % Opt in Table I, from its optimal value. Then
we allowed each of the 700 packets to have an energy function
chosen from a set of 10 types uniformly at random. The corre-
sponding results are tabulated in Table II. The simulations were
performed on a Pentium III 800 MHz machine.

% Opt. No. of Passes Run-time (sec)
10 85085 132.8
5 85609 133.4
1 86059 133.9

0.1 86164 134.0

TABLE I

THE NUMBER OF PASSES AND THE RUN-TIME OF MOVERIGHT FOR

PACKETS WITH EQUAL ENERGY FUNCTIONS.

% Opt. No. of Passes Run-time (sec)
10 175425 240.1
5 186397 251.6
1 199081 264.9

0.1 203084 269.0

TABLE II

THE NUMBER OF PASSES AND THE RUN-TIME OF MOVERIGHT FOR

PACKETS WITH DIFFERENT ENERGY FUNCTIONS.

3. Algorithm implementation: The main computational mod-
ule in the execution of the MoveRight algorithm is the best rou-
tine, which involves just two individual energy functions. For
each pair of energy functions, the best routine can be imple-
mented via a precomputed lookup-table, resulting in significant
speedup. Note that, by comparison, general convex optimization
methods that do not exploit the special structure of the problem
would need to perform a significant amount of computation at
each iteration.

4. All packets available at the origin: An important special

0-7803-7476-2/02/$17.00 (c) 2002 IEEE. 1777 IEEE INFOCOM 2002

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:34 from IEEE Xplore.  Restrictions apply. 



case is when all of the M packets are available at t = 0. This
situation is particularly relevant for the online implementation
of the MoveRight algorithm via a look-ahead buffer, and for the
discussion on fairness to follow next.

Observe that none of the M packets is constrained by causal-
ity: their start-times can be anywhere in [0, T ]. Number the
packets 1 through M and let τ1, . . . , τM be the optimal schedule
as determined by the MoveRight algorithm. We claim that any
other numbering of the packets will also lead to each of them
having the same transmission durations. To verify the claim,
simply note that cost function we’re minimizing is

∑

i wi(τi)
subject to the constraint

∑

i τi = T . Given the strict convex-
ity of the cost function (and hence the uniqueness of the optimal
schedule), the solution of this problem is identical to the solution
of the problem:

Minimize:
∑

i

wπ(i)(τπ(i))

subject to:
∑

i

τπ(i) = T,

for any permutation, π, of the numbers 1 through M.

5. Fairness: For concreteness, consider the downlink problem
with two receivers. Suppose the transmit durations, {τi}, of all
packets are computed using the MoveRight algorithm. If, at the
start of a new transmission, packets for both receivers are simul-
taneously present in the transmit buffer, then the packets may be
transmitted in any order without affecting the energy-efficiency.
This follows from the previous discussion point. Thus, when
packets destined for different receivers are present in the buffer,
in the interests of fairness, we may transmit packets in a round-
robin fashion as opposed to a first-come-first-served order. The
overall expenditure of energy is identical in both cases.

C. Extensions of the MoveRight Algorithm

Throughout this section we assume that there are M packets
to be scheduled in an offline fashion, given the arrival times of
the packets. We will show how the MoveRight algorithm can be
used to arrive at the optimal offline schedule.

1. Packets have individual deadlines: Packet i, i = 1, ...,M ,
arrives at time ti and must be transmitted by time ti +Di, where
Di > 0 is the deadline for packet i. Equally, if di is the departure
time of packet i, then di ≤ ti + Di. The Di’s are allowed
to vary across packets. However, ti + Di, will be assumed to
be monotonically increasing with i. Observe, that these impose
additional linear constraints on the energy cost-function.

The only modification to make in the MoveRight algorithm
is to change the best subroutine. The modified best subrou-
tine simply takes into account the individual packet deadlines
before returning the optimal transmission durations of two adja-
cent packets. It can be shown, but we omit it here due to lack
of space, that the convergence and optimality properties are pre-
served under this modification.

2. Finite transmit buffers: Consider the downlink problem,
where one transmitter is to send each of the M packets to one
of n receivers. When the transmitter has a finite buffer of size,

say B (1 ≤ B < M ), it is not allowed to simultaneously buffer
more than B packets. (We include the packet currently being
transmitted for determining the buffer occupancy at any time.)

A transmission schedule under the presence of a buffer of size
B is valid if, and only if, for every i, packets i and i + B never
reside in the buffer simultaneously. This translates to the fol-
lowing constraint on the departure time: di ≤ ti+B . Rewriting
the last constraint as di ≤ ti + (ti+B − ti), we see that this is
equivalent to the previous case when Di = ti+B − ti. Note that
if packets arrive in batches, then it is possible that the optimal
schedule may be to set one or more transmission durations to 0
(thereby incurring infinite energy expenditure), if it is to satisfy
the buffer constraint. This can be addressed either by dropping
packets or by disallowing batch arrivals.

III. OFFLINE SCHEDULING FOR THE UPLINK PROBLEM

The uplink or multiaccess wireless channel consists of multi-
ple transmitters and a single receiver. In general, users transmit
simultaneously causing their signals to interfere at the receiver.
The optimal rates at which the users can simultaneously transmit
has been determined for fairly general channel models, e.g., the
Additive White Gaussian Noise (AWGN) channel (see Chapter
14 of [2]). The multiaccess offline scheduling problem involves
the determination of time intervals and transmission rates obey-
ing causality constraints. To make the discussion concrete we
will assume the AWGN multiaccess channel model and restrict
ourselves to two transmitters.

We assume that in time τ the first transmitter wishes to trans-
mit a B1-bit packet while the second transmitter wishes to trans-
mit a B2-bit packet. We let w1 and w2 be the received energies
for users 1 and 2, respecively. Assuming receiver noise power
N , it can be shown that w1 and w2 must obey the following
conditions for some ε > 0 for reliable communication to take
place

w1 ≥ τ(N(22B1/τ − 1) + ε)
w2 ≥ τ(N(22B2/τ − 1) + ε)

w1 + w2 ≥ τ(N(22(B1+B2)/τ − 1) + ε).

Moreover, any (w1, w2) pair that satisfy these bounds can be
achieved (with some probability of error that can be made as
small as needed by proportionally increasing B1, B2, and τ )
using simultaneous communication. Figure 2 plots the bound-
ary of (w1, w2) pairs satisfying these conditions. If instead we
restrict ourselves to time-sharing transmission schemes, where
the users do not transmit simultaneously, we can only achieve
(w1, w2) pairs satisfying

w1 ≥ ατ(N(22B1/(ατ) − 1) + ε)
w2 ≥ ᾱτ(N(22B2/(ᾱτ − 1) + ε),

where α ∈ [0, 1] is the fraction of time τ the first user transmits
and ᾱ = 1 − α is the fraction of time the second user transmits.
The boundary of (w1, w2) pairs satisfying these conditions is
also plotted in Figure 2. Note that the boundary of the time
sharing region meets that of the optimal region at a single point.
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τN(22B2/τ − 1)

τN(22(B1+B2)/τ − 1) w1

w2

Fig. 2. Achievable (w1, w2) region for the AWGN multiaccess channel. The
solid line represents the boundary of the optimal achievable region, while
the dashed line represents the boundary of the region achievable using time-
sharing.

The scheduling problem for the multiaccess channel involves
the minimization of the total transmitted energy. First we dis-
cuss the problem of minimizing the energy needed to send two
packets in time τ . Assuming path loss factors a1 > 0 for user
1 and a2 > 0 for user 2, the total transmitted energy can be
expressed as a1w1 + a2w2. In the symmetric case, i.e., when
a1 = a2, it can be shown that time sharing achieves minimum
total energy. Specifically the following lemma holds.

Lemma 3: For the AWGN multiaccess channel B1 and B2

can be reliably transmitted in time τ at total minimum energy us-
ing time sharing. In this case w1 +w2 = τN(22(B1+B2)/τ −1).

This lemma can be used to show that a time-sharing multiaccess
offline schedule exists that achieves minimum total energy. Such
optimal time-sharing schedule can be obtained by simply merg-
ing the packets of the two users and using the optimal offline
schedule for a single user. Unfortunately when a1 (= a2, time
sharing is no longer optimal for the offline multiacess schedul-
ing problem. However, the optimal time-sharing offline sched-
ule can be obtained by merging the packets and then applying
the MoveRight algorithm.

We omit the proofs of Lemma 3 and the fact that time-sharing
is optimal when a1 = a2 due to limited space.

IV. ONLINE SCHEDULING

The offline version of the MoveRight algorithm lends itself
nicely for online use by means of a look-ahead buffer. For con-
creteness, consider the downlink scheduling problem when there
are K distinct receivers (and hence energy functions of K dif-
ferent types: w1, . . . , wK ). We are required to schedule pack-
ets arriving during the time interval [0, T ]. Given the energy
functions, the MoveRight algorithm provides the optimal offline
schedule.

For an online implementation of the MoveRight algorithm,
buffer all packets which arrive in the interval [0, L], where
L ) T . Using the MoveRight algorithm, schedule these pack-

ets for departure in the interval [L, 2L]. Meanwhile, buffer the
packets arriving in [L, 2L] and schedule them for departure in
the interval [2L, 3L]. Proceeding in this fashion, packets arriv-
ing in the interval [(m − 1)L,mL] are scheduled for departure
using the MoveRight algorithm in the interval [mL, (m + 1)L].
Call this scheme the “static look-ahead scheme”. We shall now
see that property 4 of the MoveRight algorithm vastly simpli-
fies the scheduling complexity of the static look-ahead scheme,
yielding the following algorithm.

The MoveRightExpress Algorithm: Suppose there are N
packets in the look-ahead buffer at time mL, to be scheduled
for transmission in the interval [mL, (m + 1)L]. Let there be
n1, . . . , nK packets destined for receivers 1 through K respec-
tively. According to property 3 these packets may be scheduled
in any order. Therefore, by reordering if necessary, we may as-
sume the following order on the packets: all packets for receiver
1 appear first, followed by all packets for receiver 2, and so on,
with the packets for receiver K appearing at the end.

Suppose that all packets are of equal length 3. Since the en-
ergy functions of the first n1 packets are all equal to w1, we
may assemble these packets into a “superpacket”. The energy
function of the superpacket is W1(τ) = n1 w1( τ

n1
). Likewise

assemble the packets for the other receivers into superpack-
ets with corresponding energy functions Wi(τ) = ni wi( τ

ni
),

i = 2, . . . , K.

Now run the MoveRight algorithm on these K superpack-
ets to obtain T1, . . . , TK as the optimal transmission durations.
Given this and the fact that the packets destined for a single re-
ceiver must all have the same transmission duration (they have
identical, strictly convex energy functions), it follows that the
optimal transmission durations for the n1 packets of receiver 1
are T1

n1
. Likewise, the optimal transmission durations for the ni

packets of receiver i are Ti
ni

. Having determined the optimal
schedule for all the packets, another application of property 4
implies that they may be transmitted in any order in the interval
[mL, (m + 1)L].

Remark: It is worth noting the reduction in complexity
achieved by the MoveRightExpress algorithm over the basic
MoveRight algorithm. From depending on the total number of
packets, M , the MoveRight Online algorithm’s complexity only
depends on the number of receivers, K.

As a comparison, we ran MoveRightExpress for the scenario
of Table II. The results are tabulated in Table III. A comparison
of Tables II and III shows that MoveRightExpress is much
more efficient than the basic MoveRight algorithm. Again, the
simulations were performed on a 800 MHz Pentium III machine.

In contrast, one could also consider the following “dynamic
look-ahead scheme”. Set the transmit time of the first packet,
τ1 = L. Buffer all subsequent packets which arrive in the
interval [0, L]. Schedule the second transmission using the
MoveRight Online algorithm in the interval [L, 2L]. Suppose
according to this schedule, the transmit time of the second
packet is τ2; i.e., it transmits from L to L+τ2. At L+τ2, we have
access to all packets that arrived in the interval [0, L+τ2]. Given

3Extending this to variable-length packets is straightforward, see [8].
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% Opt. No. of Passes Run-time (sec)
10 12 0.0
5 13 0.0
1 20 0.1

0.1 40 0.1

TABLE III

THE NUMBER OF PASSES AND THE RUN-TIME OF MOVERIGHTEXPRESS

FOR PACKETS WITH DIFFERENT ENERGY FUNCTIONS, AS CONSIDERED IN

THE SCENARIO OF TABLE II.

these packets, again using the MoveRight Online algorithm,
schedule the third transmission in the interval [L + τ2, 2L + τ2].
Proceeding thus, we may schedule packets one at a time by dy-
namically taking new arrivals into account. If no new packets
arrive and the buffer gets empty, then the next arrival is sched-
uled for a duration of L and the scheme proceeds as before.
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Fig. 3. Comparison of the Online Static and Dynamic Look-ahead schemes
with the Offline MoveRight algorithm for a two-user downlink channel.
The users’ packets arrive according to two independent Poisson processes
with identical rates. The energy functions used are 104

6 τ(212/τ − 1) and
16×104

6 τ(212/τ − 1), T = 10000, and the look-ahead window for each
rate is chosen so that the energy/packet for static lookahead is 20% larger
than that for the optimal offline. The simulated delay and energy/packet
functions are plotted as a function of the combined arrival rate.

Of course, one expects the dynamic look-ahead scheme to
outperform the static look-ahead scheme since it uses more in-
formation. However, the dynamic look-ahead scheme intro-
duces considerable extra complexity, since it needs to run the
MoveRight Online algorithm for every transmission. This is in
contrast to the static look-ahead scheme, which only runs the
MoveRight Online algorithm once for each look-ahead window
of length L. This extra complexity would be worth it if the dy-
namic look-ahead scheme considerably outperforms the static
look-ahead scheme. But, Figure 3 shows that the difference
in energy and delay performance between the two schemes is
negligible and quite competitive with respect to the offline algo-
rithm when there are two receivers.
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Fig. 4. Comparison of the Online Static and Dynamic Look-ahead schemes as
the size of the look-ahead window increases. The packet generation, energy
functions, and T used are the same as for Figure 3. The combined rate was
0.6packets/unit time. The MoveRight algorithm gives energy 2.5 × 106,
and delay of 37.56.

Another interesting comparison is between the two online
schemes mentioned above, as the size of the look-ahead win-
dow, L, varies. Clearly, larger values of L will make the on-
line schemes compete better with the offline scheme in terms of
energy, but will increase the delay considerably. On the other
hand, small values of L will give good delay, but at the ex-
pense of energy efficiency. This suggests that there is a good
choice for the size of the look-ahead window, L, which trades-
off energy-efficiency and delay optimally for a given distribution
of the arrival times. Figure 4 illustrates this trade-off when there
are two users and the packet arrival times are independent Pois-
son processes. We notice that the energy curves have a sharp
knee around L = 20, suggesting that most of the gain in energy-
efficiency is obtained with a look-ahead window of this size.

Extension to Channels with fading: Suppose that the fading
state of the channel (or channels) is known causally, at the end
of each transmission to both the transmitter and receiver. Also
suppose that the fading changes slowly compared to the packet
transmission duration 4. Knowing the fading state at time 0
is tantamount to knowing the energy functions of all packets
(given this fade-state). With these assumptions, the dynamic
look-ahead scheme described can be readily used: The trans-
mission duration of the first packet is computed by running the
MoveRightExpress algorithm with this set of energy functions.
After the first packet is transmitted, the current fading state is
used to compute the transmission duration of the second packet,
and so on.

V. CONCLUSIONS

Recently, there has been a lot of research effort directed to-
ward the design of low power signal processing and computing
circuitry. On the networking side protocols are being designed

4These are standard assumptions for the slowly fading wireless channel in the
literature (see, for example, [7]).
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for minimum-energy routing, and for power control to mitigate
interference.

We considered the energy-efficiency of packet transmission
in several scenarios arising in wireless networks. For the down-
link channel, we formulated the energy-efficient offline schedul-
ing problem as a convex optimization problem and exploited its
special structure to provide an efficient optimal algorithm, called
MoveRight. We showed that MoveRight also optimally solves
the downlink problem with additional constraints imposed by
packet deadlines and finite transmit buffers. For the uplink (mul-
tiaccess) problem, MoveRight optimally determines the offline
time-sharing schedule. A very efficient online algorithm, called
MoveRightExpress, that uses a look-ahead buffer of small size
was shown to perfom competitively with the optimal offline
schedule in terms of energy efficiency and delay.

Further work consists of integrating the ideas developed in
this paper with network-wide, decentralized, minimum-energy
transmission protocols.
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APPENDIX

CONVERGENCE PROPERTIES OF THE MOVERIGHT

ALGORITHM

Here we provide a proof for Lemma 2 in Section II-B, which
gives an estimate for the worst-case number of iterations for the
convergence of the MoveRight algorithm. For this analysis it
is assumed that the energy functions are identical and that all
packets are available at time 0. The justifications for these as-
sumptions were discussed in Section II-B. From [5], we know
that the optimal scheduling times are equal.

Proof of Lemma 2: Let ε > 0 and sk
i , for i = 2, . . . , M − 1

and k ≥ 1, be the start-times of the packets at the beginning
of the kth pass of the MoveRight algorithm, where s0

i = 0,
for i = 1, . . . , M , sk

1 = 0, and sk
M+1 = T,∀k ≥ 0. The

algorithm is said to have ε-converged to the optimal solution if
maxi(sopt

i − sk
i ) < ε.

Observe that the sk
i s follow the recursion, sk

i = 1
2 (sk

i−1 +
sk−1

i+1 ),∀k ≥ 1, i = 2, . . . M . Let sk = [sk
1sk

2sk
3sk

4 · · · sk
M+1]t,

then the recursion can be rewritten as sk = ΓMsk−1, where

ΓM =
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Therefore, we have ‖s∞ − sk‖∞ = ‖s∞ − Γk
Ms0‖∞ =

‖Γk
M (s∞ − s0)‖∞, where s∞ = sopt = [0 T

M
2T
M · · · T ]t.

This implies that, s∞ − so = [0 −T
M

−2T
M · · · −(M−1)T

M 0]t.
Define Γ′

M as the matrix obtained by removing the first row,
first column, last row and last column of ΓM . Let s̃ =
[−T

M
−2T
M · · · −(M−1)T

M ]t. Now observe that ‖Γk
M (s∞ −

s0)‖∞ = ‖Γ′k
M s̃‖∞.

Let λM be the largest eigen-value (in magnitude) of
Γ′

M . Therefore, we have, |λM |k‖s̃‖2 ≥ ‖Γ′k
M s̃‖2 ≥

‖Γ′k
M s̃‖∞. Hence, for all k, such that |λM |k‖s̃‖2 ≤ ε,

we have ‖Γ′k
M s̃‖∞ ≤ ε. ‖s̃‖2 = T

√

M(M−1)(2M−1)
6 ∼

T
√

M
3 . Taking T to be fixed, this implies for all k ≥

log(
√

M
3

T
ε )

log( 1
|λM | )

≈ O

(

log(
√

Mε−1)

log
(

1
|λM |

)

)

, we have ‖Γ′k
M s̃‖∞ ≤ ε.
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Below is a plot of log(
√

M
3

T
ε )

log( 1
|λM | )

, for T = 10000, ε = 0.1,M =
1, . . . , 1000.
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Fig. 5. Number of passes versus number of packets assuming T = 10000 and
ε = 0.1.
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