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Abstract—The paper considers the problem of minimizing the
energy used to transmit packets over a wireless link via lazy sched-
ules that judiciously vary packet transmission times. The problem
is motivated by the following observation. With many channel
coding schemes, the energy required to transmit a packet can be
significantly reduced by lowering transmission power and code
rate, and therefore transmitting the packet over a longer period of
time. However, information is often time-critical or delay-sensitive
and transmission times cannot be made arbitrarily long. We
therefore consider packet transmission schedules that minimize
energy subject to a deadline or a delay constraint. Specifically,
we obtain an optimal offline schedule for a node operating under
a deadline constraint. An inspection of the form of this schedule
naturally leads us to an online schedule which is shown, through
simulations, to perform closely to the optimal offline schedule.
Taking the deadline to infinity, we provide an exact probabilistic
analysis of our offline scheduling algorithm. The results of this
analysis enable us to devise a lazy online algorithm that varies
transmission times according to backlog. We show that this lazy
schedule is significantly more energy-efficient compared to a
deterministic (fixed transmission time) schedule that guarantees
queue stability for the same range of arrival rates.
Index Terms—Minimum energy transmission, optimal sched-

ules, power control, wireless LAN.

I. INTRODUCTION

UBIQUITOUS wireless access to information is gradually
becoming a reality. Dedicated-channel voice transmis-

sion (as in most existing cellular systems, e.g., GSM, IS-95)
has already become a widespread and mature technology.
Packet-switched networks are being considered for heteroge-
neous data (combined voice, web, video, etc.) to efficiently
use the resources of the wireless channel. Wireless LANs and
personal area networks, where packetization is more suited
to the bursty nature of the data, are being developed and
deployed. More recently, ad hoc networks and networks of
distributed sensors are being designed utilizing the robustness
and asynchronous nature of transmissions in packet networks.
A key concern in all of these wireless technologies is energy

efficiency. The mobility of a hand-held wireless device is lim-
ited by the fact that its battery has to be regularly recharged
from a power source. In a sensor network, the sensors may not
be charged once their energy is drained, hence the lifetime of
the network depends critically on energy. It has therefore been

Manuscript received March 22, 2001; revised March 29, 2002; approved by
IEEE/ACM TRANSACTIONS ONNETWORKING Editor G. Pacifici. This work was
supported in part by a Stanford Graduate Fellowship and a Terman Fellowship.
The authors are with the Information Systems Laboratory, Stanford Univer-

sity, Stanford, CA 94305 USA (e-mail: elif@stanford.edu; balaji@isl.stan-
ford.edu; abbas@isl.stanford.edu).
Publisher Item Identifier 10.1109/TNET.2002.801419.

of wide interest to develop low-power signaling and multiac-
cess schemes, signal processing circuits, and architectures to
increase battery life.
There has been a lot of research on transmission power

control schemes over the past few years (see, e.g., [4], [8],
[11], [12], [14], [19] and [21]). The chief motivation of these
schemes, however, has not been to directly conserve energy but
rather to mitigate the effect of interference that one user can
cause to others. The results ranged from obtaining distributed
power control algorithms to determining the information
theoretic capacity achievable under interference limitations [2],
[13].
Whereas most power control schemes aim at maximizing

the amount of information sent for a given average power
constraint, a recent study [3] considers minimizing the power
subject to a specified amount of information being successfully
transmitted. Rather than minimizing power, [5] considers the
question of minimizing energy directly; and compares the
energy efficiency, defined as the ratio of total amount data
delivered and total energy consumed, of several medium access
protocols.
In this paper we expand on the work in [17] and consider

the problem of minimizing the energy used by a node on a
point-to-point link to transmit packetized information within a
given amount of time. The setup attempts to model a number
of realistic wireless networking scenarios: 1) a node with finite
lifetime and finite energy supply such as in a sensor network
[16]; 2) a battery operated node with finite-lifetime information;
that is, information that must be transmitted before a deadline;
and 3) a battery-operated node that is periodically recharged. In
this case, minimizing transmission energy ensures that the node
does not run out of energy before it is recharged.
To minimize transmission energy, we vary packet transmis-

sion times and power levels to find the optimal schedule for
transmitting the packets within the given amount of time. The
observation that leads to this approach is that transmission en-
ergy can be lowered by reducing transmission power and trans-
mitting a packet over a longer period of time. It has been known
(see [1], andmore recently, [9]) that, withmany coding schemes,
the energy needed to transmit a given amount of information
is strictly decreasing and convex in the transmission duration.
The next section provides a few examples in support of this
observation.
The above discussion implies that it makes sense to transmit a

packet over a longer period of time to conserve energy. However,
since all packets must be transmitted within the given amount
of time, the transmission time of any one packet cannot be arbi-
trarily long as this would leave too little a time for the transmis-
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sion of future packets and increase the overall energy spent. The
rest of the paper attempts to understand this tradeoff precisely
and to exploit it to devise energy-efficient schedules.

A. Outline of the Paper
In Section II, we set up the framework for modeling the

minimum energy packet transmission scheduling problem for
a node with a finite lifetime . In Section III, we find the
offline optimal-energy transmission schedule for fixed length
packets and Section IV extends these results to variable length
packets. In Section V, the form of the offline optimal-energy
schedule (OOE) suggests a natural online schedule. We show
that this online schedule is quite energy efficient—it achieves
an average energy that is quite close to the optimal offline
algorithm. The comparison is done using simulations since it is
hard to conduct analytical comparisons for finite .
By letting and assuming Poisson arrivals, we are

able to conduct an exact analysis of the optimal offline schedule
(as outlined in the Appendix). This gives us insight into how
to design an energy-efficient online schedule that assigns
transmission times according to the backlog in the queue. We
call this schedule Lazy. Under a queue stability constraint, Lazy
is compared with the Deterministic schedule and it is shown
to beat the Deterministic schedule significantly for a range of
packet arrival rates. This is an interesting comparison because
among schedules that are independent of the packet arrival
process (and hence are oblivious of backlogs), the deterministic
schedule achieves the smallest average delay,1 which implies
that it has the highest transmission times, and hence the lowest
energy. The fact that lazy schedules are more energy-efficient
than the deterministic schedule, therefore, demonstrates the
need to take advantage of lulls in packet arrival times.
Finally, Section VI outlines further work and concludes the

paper.

II. PROBLEM SETUP

Consider a wireless node whose lifetime is finite, equal to
, say. Suppose that packets arrive at the node in the time

interval and must be transmitted to a receiver before
(see Fig. 1). In the figure, the arrival times of packets, , are
marked by crosses and interarrival epochs are denoted by .
Without loss of generality, we assume that the first packet is
received at time 0. The node transmits the packets according
to a schedule that determines the beginning and the duration of
each packet transmission. We seek an answer to the question:
How should the transmission schedule be chosen so that the total
energy used to transmit the packets is minimized?
Let denote the transmission energy per bit for the par-

ticular coding scheme that is being used, which has code rate
bits/transmission.2 Hence, is the number of trans-

missions per bit. The following are the only assumptions we
make about in this paper.

1By the well-known theorem “determinism minimizes delay” [20].
2The word transmission in this paper frequently refers to the transmission of

an entire packet. The term bits/transmission will be used to indicate the number
of bits per channel use (also known as bits/symbol), i.e., the information theo-
retic rate, and transmissions/bit indicates the reciprocal of this rate.

Fig. 1. Packet arrivals in .

Fig. 2. Energy per bit versus transmission time with optimal coding.

1) .
2) is monotonically decreasing in .
3) is strictly convex in .
Assumption 1) is obvious. We shall now demonstrate that as-

sumptions 2) and 3) hold by considering the energy required to
reliably transmit one bit of information over a wireless link. The
following two examples assume a discrete time additive white
Gaussian noise (AWGN) channel model for the wireless link
and consider two different channel coding schemes.
1) Optimal Channel Coding: Consider an AWGN wireless

channel with average signal power constraint and noise power
. As is well known [6], the information theoretically optimal

channel coding scheme, which employs randomly generated
codes, achieves the channel capacity given by

bits/transmission (1)

More precisely, given any , information can be
reliably transmitted at rate . To determine the energy
per bit , note that can be interpreted as the number
of transmissions per bit. Substituting into (1), we obtain

It is easy to see that is monotonically decreasing and convex
in , and that as approaches infinity the energy required to
transmit a bit, . Fig. 2 plots

versus for and . The range of in the plot
corresponds to SNR values from 20 dB down to 0.11 dB. This is
a typical range of SNR values for a wireless link. In this range,
can be decreased by a factor of 20 by increasing transmission

time and correspondingly decreasing power.
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Fig. 3. Energy per bit versus transmission time for the suboptimal coding
scheme.

2) A Suboptimal Channel Coding Scheme: Consider a
scheme that uses antipodal signaling [18] and binary block
error correction coding again over an AWGN wireless link. It
can be shown that the minimum error probability per bit using
antipodal signaling over an AWGN channel is given by

where is the well-knownGaussian -function. Using this sig-
naling scheme, the channel is converted into a binary symmetric
channel (BSC) with cross-over probability . The optimal bi-
nary error correction coding scheme achieves the Shannon ca-
pacity for the BSC, given by

bits/transmission

where is the binary entropy function.
Thus, for any , information can be reliably trans-

mitted at rate . Again interpreting to be the
number of transmissions per bit, the energy per bit can be com-
puted as a function of . This is depicted in Fig. 3 for
and . Note that is again monotonically decreasing
and convex in and converges to a limit , which, as
expected, is larger than that using optimal coding. The range of
in the figure corresponds to an SNR between 20 dB to 3.7

dB. In this range, drops by over a factor of 8.
3) An Uncoded MQAM Scheme: Here, each symbol can as-

sume one of possible values, hence, one symbol carries
bits of information, i.e., the number of transmissions per bit is
. This modulation scheme is used in some practical wireless

systems, e.g., the IEEE 802.11a wireless LAN standard recom-
mends MQAM with in each OFDM subcarrier.
Fig. 4 plots the energy per bit as a function of the number

of transmissions per bit using MQAM, when the bit error rate
(BER) is less than 10 .
The three examples above support the assumptions made ear-

lier about . Now, denote by the transmission energy for
a packet that takes transmissions (i.e., channel uses). If the
packet contains bits, this corresponds to transmis-

Fig. 4. Energy per bit versus transmission time with uncoded MQAM
modulation.

sions/bit, and . From our earlier assumptions
about , it follows that is a nonnegative, monotonically
decreasing and convex function of .

III. OPTIMAL OFFLINE SCHEDULING

In this section, we determine the energy-optimal offline
schedule for the above model of a finite number of packets
to be transmitted in a given finite-time horizon. This offline
optimal schedule provides a lower bound on energy that can be
used for evaluating the performance of online algorithms. After
briefly introducing the basic setup, a necessary condition for
optimality is stated (Lemma 2). This motivates the definition of
the specific schedule OOE (Definition 1). OOE is shown to be
feasible (Lemma 3), and energy-optimal (Theorem 1).
Suppose that the arrival times , of the

packets that arrive in the interval are known in advance,
i.e., before . Assuming equal length packets each with
bits, the offline scheduling problem is to determine the transmis-
sion duration vector so as to minimize .
The assumption that decreases with trivially implies

that it is suboptimal to have , for we could simply
increase the transmission times of one or more packets and re-
duce . Hence, we only consider “non-idling” transmission
schedules where . It is also sufficient to consider
FIFO schedules where packets are transmitted in the order they
arrive. The FIFO and non-idling conditions combined with
the causality constraint, i.e., that packet transmission cannot
begin before the packet arrives, yield the following feasibility
conditions.
Lemma 1: A non-idling FIFO schedule is feasible iff

for , and .
We now state a key observation of this section.
Lemma 2: A necessary condition for optimality is

for (2)
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Proof: Let be a feasible vector such that for
some . Further suppose that it is optimal.
Consider the schedule such that
and for . It is easy to verify that is feasible.
Comparing the energies used by and , we obtain

where inequality follows from the strict convexity of .
This contradicts the optimality of and proves the lemma.
The proof of the above lemma suggests the form of the op-

timal offline schedule: equate the transmission times of each
packet, subject to feasibility constraints. We proceed to do just
this and define the optimal schedule next.
Given packet interarrival times , let
, and define

and

For , let

and

where varies between 1 and . We proceed as above
to obtain pairs until for the first time.3 Let

. The pairs ,
are used to define a schedule whose transmission times are de-
noted by , and Theorem 1 shows that is the optimal offline
schedule.
Definition 1: The vector of transmission times given by

if (3)

is called OOE.
Fig. 5 shows an example run of OOE. The arrivals in the

figure have been randomly generated (with exponentially dis-
tributed interarrival intervals of mean 1) using a time window
of . The heights of the bars are proportional to the
magnitudes of the s and s.
Lemma 3: The following hold for of OOE.
i) It is feasible and .
ii) It satisfies the condition stated in Lemma 2.
3Note that, by definition, . Therefore, the s are increasing with
and will equal for some .

Fig. 5. An example run of s (top) and s (bottom).

Proof: We first establish i). For ,

where the inequality follows from the definition of .
Similarly for ,

Proceeding thus, we obtain that for all ,
.

To finish the proof of i) it only remains to show that
. Now

(4)

where and . By definition of and , it
follows that for each

Using this in (4), we get . This estab-
lishes i).
As for ii), it suffices to show that since this

implies for each . We first show that .
For any ,
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where follows from the definition of . Choosing ,
we obtain

from which it follows that .
In an exactly similar fashion it can be shown that

and, more generally, that for any , .
This establishes ii) and completes the proof of the lemma.
Theorem 1: The schedule OOE of Definition 1 is the op-

timum offline schedule.
Proof: Consider any other feasible schedule . Let be the

first index where . We show that . There
are two possibilities to consider.
Case 1— : Since (otherwise would idle

for some time, making it suboptimal), there must be at least one
for which . Let

. Consider the schedule defined as follows:

(5)

(6)

for all (7)

where .
Claim 1: The schedule does not idle and is feasible.
Proof of Claim 1: Since , it does not

idle. By the definition of the indices and , and the feasibility
of and , it follows that

for (8)

(9)

for (10)

for (11)

This verifies the conditions for feasibility in 1, and Claim 1 is
proved.
Claim 2: .
Proof of Claim 2:

where inequality follows from two facts: 1) is strictly
convex and decreasing and 2) . That is, for any real-
valued function that is strictly convex and decreasing, and for
any such that , we have

, where . This proves Claim 2.

Thus, under Case 1, any feasible schedule may be mod-
ified to obtain a more energy efficient schedule . Therefore,
schedules which are different from in the sense of Case 1
are suboptimal.
Case 2— : We shall argue for a contradiction and

show that such a is infeasible.
From the definition of , we know that , assuming

. In fact for all .
Since is the first index where and disagree,

for all . Suppose that the schedule satisfies the condition
of Lemma 2 (else it is suboptimal and we are done). It follows
that , and we obtain

(12)

But, by definition of ,

Equation (12) now gives , implying that
is infeasible.
This contradiction concludes Case 2 and the proof of The-

orem 1 is complete.
Lazy scheduling trades off delay for energy. To do this, it must

necessarily buffer packets. The energy savings that come from
simply keeping a small buffer is best illustrated by an example.
Imagine a scheme that keeps a buffer size of zero (hence trans-
mission times can at most be set equal to interarrival times).
For the set of packet arrivals shown in Fig. 5, the optimal of-
fline schedule achieves an energy of 65.445 and the zero-buffer
scheme (which, therefore, has no queueing delay) achieves an
energy 77.78 10 ; five orders of magnitude larger [using an
energy function ].

IV. EXTENSION TO OPTIMAL OFFLINE SCHEDULING OF
VARIABLE-LENGTH PACKETS

This section extends the results of the previous section to vari-
able-length packets. As the optimal schedule and the arguments
that establish its optimality are virtually identical to those of the
previous section, for brevity, we shall omit a number of details.
Consider a node at which packets arrive in , and

suppose that the length of packet equals bits. Without loss
of generality we consider schedules that do not idle. Hence, the
feasibility condition in Lemma 1 continues to apply, i.e., is
feasible if and only if for , .
The arrival times , are known at time 0, as

are the lengths of the packets, . As before,
assume that . Define . The problem is
to determine , the vector of transmission times, so as to mini-
mize .
Since it is suboptimal to consider idling policies, we shall

only consider schedules that satisfy .
Lemma 4: A necessary condition for optimality is

for (13)
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Proof: Let be a feasible vector such that
for some . Further sup-

pose that it is optimal. Consider the schedule such that
and

for . It is easy to verify that is feasible (because
). Comparing the energies used by and , we obtain

where inequality follows from the convexity of . This
contradicts the optimality of and the lemma is proved.
The proof of the above lemma suggests the principle of the

optimal offline schedule: Equate the number of transmissions
per bit for each packet, subject to feasibility constraints. Note
that this principle is similar to the one in the previous section,
indeed, as will be the optimal schedule and proofs.
Given packet interarrival times , let
, and define

and

For , let

and

where varies between 1 and . We proceed as above
to obtain pairs until for the first time. Let

. The pairs ,
are used to define the general form of OOE (the OOE of the
previous section is simply the special case for which ,
). As in the previous section, transmission times of OOE are

denoted , and Theorem 2 shows that is the optimal offline
schedule for the variable length case.

Definition 2—OOE: The schedule with the vector of trans-
mission times given by

if (14)

is called OOE.
Lemma 5: The following hold for the of OOE.
1) It is feasible and .
2) It satisfies the condition stated in Lemma 4.
Proof: We first establish 1). For ,

where the inequality follows from the definition of .
Similarly, for ,

Proceeding thus, we obtain that for all ,
.

With similar steps, it can be shown that , and
1) is established.
As for 2), it suffices to show that since this implies

, for each . We first show that . For
any

where follows from the definition of . Choosing ,
we get

from which it follows that .
In a very similar fashion, it can be shown that and,

more generally, that for any , . This
establishes 2) and completes the proof of the lemma.
Theorem 2: The schedule OOE of Definition 2 is the op-

timum offline schedule.
Proof: The proof is identical to the proof of Theorem 1.

Hence, to avoid repetitions, we only present the highlights and
not the details.
As before, consider any other feasible schedule . Let be the

first index where . We show that .
There are the following two possibilities to consider. Case 1 is

, and Case 2 is .
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Under Case 1, we use the schedule to define another
schedule as before and establish the following two claims.
Claim 1: The schedule does not idle and is feasible.
Claim 2: .
Hence, we conclude that any feasible schedule differing

from in the sense of Case 1 may be modified to obtain a
strictly more energy efficient schedule . This concludes Case
1.
Under Case 2, we shall argue for a contradiction and show

that the schedule must be infeasible exactly as in the proof of
Theorem 1.
This completes the proof of Theorem 2.

V. ONLINE SCHEDULING

In this section, we develop and evaluate energy-efficient on-
line scheduling algorithms based on the optimal offline algo-
rithm discussed in Section III. Henceforth, we shall assume that
the packets are of the same length.
In order to design online algorithms that are energy-ef-

ficient on average, one needs the statistics of the arrival
process. Whilst our approach is general, for concreteness and
tractability, we mainly assume Poisson arrivals in this paper.
We note that Poisson arrivals are unrealistic in the wireless
LAN environment, where arrivals tend to be more bursty.
In fact, we have observed that when arrivals are bursty, lazy
scheduling performs even better than in the Poisson case, for
one can take advantage of a small queueing delay and greatly
reduce transmission energy.
We proceed by first formulating the offline algorithm OOE in

a manner that is suited for online use (Section V-A). Based on
this formulation, we propose an online algorithm (Section V-B)
and, using simulations, show that on the average it is almost as
energy-efficient as the optimal offline schedule (Section V-C).
We then investigate the important special case of .

In this case, we are able to analyze the optimal offline schedule
exactly (in the Appendix), obtain an online lazy schedule as a
result of this analysis, and perform comparisons of the energy
efficiency of the lazy schedule and a fixed-transmission time
online algorithm (Section V-D).

A. Online Formulation of OOE
Consider the time interval and as before assume that

a packet arrives at time 0. Suppose also that packets arrive as
a Poisson process of rate . Conditioned on there being
arrivals in , let the interarrival times be denoted by . Let
the optimal offline schedule, OOE, assign transmission times
to these packets. The time at which the th packet starts

transmitting is

The quantity given by

is the backlog in the queue when the th packet starts transmit-
ting. Observe that this backlog does not include the th packet;
that is, if , then there is precisely one packet [namely, the

th] in the queue when the th packet starts transmitting.
Finally, let , be the interarrival
times between packets that arrive after . Thus, when the th
packet starts transmitting the situation is this: 1) the “time to go”
equals ; 2) there are packets currently backlogged; 3)

packets are yet to arrive and the first of these will
arrive in units of time, the second will arrive in units
of time, etc.
With this notation and some algebra, it can be shown that

is also given by

(15)

This formula is just an alternative representation of OOE and
gives exactly the same schedule. It schedules packets one at a
time, taking into account the current backlog, future arrivals,
and the time to go.

B. Online Algorithm
The alternative form of OOE in (15) strongly suggests the fol-

lowing online algorithm. The transmission time of a packet that
starts being transmitted at time when there is a backlog
of packets can be set equal to the expected value of the random
variable

(16)

where is the current backlog and are the interarrival times
of the (random number) of packets that will arrive in .
In the following, schedules based on will be used.

At the moment, we do not know that this will produce the op-
timal online schedule, nor do we believe that it should. However,
it is an online schedule and its performance can be compared to
that of the optimal offline schedule. We proceed to do this in
the next section and evaluate numerically when
is finite.

C. Simulations: Finite-Time Horizon
Using simulations, we compare the energies expended by the

online algorithm defined above and the optimal offline algo-
rithm. The setup is as follows. A finite-time horizon s
is chosen. We assume a packet length of kB and a max-
imum rate of 6 b/transmission, with a link speed of 10 transmis-
sions/s. (Hence, theminimum transmission duration for a packet
is 10/6 ms, which we shall call a time unit.) Within the time pe-
riod , we assume that packets arrive according to a Poisson
process at a loading factor of arrivals per time unit.
Since it is possible for packets to arrive arbitrarily close to the
finish time , if we insist that these very late arrivals also be
transmitted before the deadline , then any algorithm, including
the optimal offline algorithm, incurs a huge energy cost. This
makes comparisons of performance difficult and meaningless.
We therefore use a “guard band” around the finish time and
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Fig. 6. A comparison of the online algorithm with the optimal offline
algorithm.

disallow packets from arriving after time . For the com-
parison, we use s and the following formula4 for the
packet transmission energy as a function of packet transmis-
sion time in seconds,

(17)

Fig. 6, which plots the energy per packet against transmission
time, shows that the online algorithm is almost as energy-effi-
cient as the optimal offline algorithm.

D. Infinite-Time Horizon: Formulation and Simulations
The algorithm presented above was directly motivated by

the optimal offline algorithm. It is of interest to let and
look at how the lazy schedule performs in terms of energy and
delay. Defining , it is shown
in the Appendix5 that

.
Fig. 7 plots as a function of the backlog when the

arrivals are a rate 1 Poisson process. As can be seen, the av-
erage transmission time of the offline schedule decreases with
the backlog, approaching as the backlog, , approaches in-
finity. This exact analysis of the offline algorithm not only pro-
vides us with insight into the manner in which transmission
times should depend on backlog, but also suggests a specific
online schedule.
Unlike the finite case where online schedules can be com-

pared solely on the basis of their energy expenditure, when
packet delays (or queue size, stability, etc.) must be taken into

consideration. Otherwise, energy comparisons become mean-
ingless since we can simply let transmission times be arbitrarily
long and obtain the minimum possible transmission energy per
packet whereas the delay can become infinite.
1) Online Scheduling Under a Stability Guarantee: As

above, packets arrive according to a rate process at a trans-
4The formula is obtained using the information theoretic capacity formula in

(1) for the AWGN channel with noise power for the transmission of
10-kB packets for a duration s at symbol rate 10 transmissions/s.
5The analysis in the Appendix leads to some side results about the running

averages of exponential random variables, seemingly of independent interest.

Fig. 7. A plot of versus for .

TABLE I
AVERAGE ENERGY/PACKET AND AVERAGE DELAY/PACKET FOR LAZY AND
DETERMINISTIC OVER AN INFINITE TIME HORIZON. DELAY VALUES ARE IN

MILLISECONDS (HIGH SNR)

mission node with infinite queue capacity. The node transmits
a packet for a duration when the backlog in the queue,
excluding packet , is . The arrival rate is not known at the
transmitter, but it is known that .
The transmitter needs to be designed to ensure stability, and

since is a worst case estimate of the arrival rate, stability
will be ensured if the rate of transmission is higher than .
Since a lazy schedule varies transmission times depending on
the backlog according to the function , for stability it suf-
fices that for all large enough.
Poisson Arrivals: We now compare the specific

lazy schedule, Lazy , that sets
to a deterministic schedule

with . The arrival process is a rate Poisson
process.
Note that as long as , both scheduling algorithms ensure

stability for arrival rates less than . We performed simula-
tions using both scheduling algorithms for , ,
varying from 0.3 to 0.9. To allow energy and delay to come
close to equilibrium, each simulationwas performed for 100 000
arrivals. The results are given in Table I.
The energy/packet values in Table I are dimensionless due

to the normalization with noise PSD [see (17)]. The energy
values correspond to an average SNR per packet of approxi-
mately 25–34 dB for Lazy and 36 dB for Deterministic.
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TABLE II
AVERAGE ENERGY/PACKET AND AVERAGE DELAY/PACKET FOR LAZY AND
DETERMINISTIC OVER AN INFINITE TIME HORIZON. DELAY VALUES ARE IN

MILLISECONDS (LOW SNR)

TABLE III
AVERAGE ENERGY/PACKET AND AVERAGE DELAY/PACKET FOR LAZY AND

DETERMINISTIC OVER AN INFINITE TIME HORIZON. DELAY VALUES
ARE IN MILLISECONDS

In order to give a fuller picture, let us also consider lower SNR
values. We do this by considering lower rates. In the rest of this
section, the maximum rate is set to 2 bits/transmission, while
the symbol rate is kept the same as before.6 Table II shows how
the energy per packet ranges for Lazy and Deterministic. For
Lazy, the SNR goes from 7 to 11 dB.
Bursty Arrivals: We have just seen that the schedule Lazy

is more energy-efficient compared to a deterministic schedule
when the arrivals are Poisson. The schedule Lazy was devel-
oped by conducting an asymptotic analysis of (see the
Appendix), where is defined in (16). The asymptotic
analysis for Poisson arrivals assumes that the interarrival times

in (16) are i.i.d. exponentials. Thus, Lazy is “tuned” to
Poisson arrivals.
It is therefore interesting to ask just how well Lazy will

perform under non-Poisson input processes. To this end, we
consider the following “bursty” arrival process. The interarrival
times are i.i.d. with ,
where , and are parameters. When is small and is
large arrivals tend to be bursty with a high probability.
First, we run Lazy on the bursty arrival process with

, and . The results are summarized in
Table III. Comparing the energy/packet values in the last three
rows of Tables I and III, we see that Lazy is indeed better
6Since the symbol rate is 10 transmissions/s, the minimum transmit time of

a 10 bit packet (i.e., unit time) is now 10/2 ms as opposed to the previous 10/6.
Note that is arrivals/unit time, hence for the same , the actual number of
packet arrivals/s is lower than before.

tuned for Poisson arrivals. A second conclusion from the tables
is that, at low values of , lazy scheduling works better on the
bursty arrival process than on the Poisson arrival process.
Now we develop another algorithm, called Lazy ,

which is derived from the bursty arrival process, and
hence potentially better tuned to it. Consider an infinite
time horizon as above. Recall that, for a backlog of ,

. In order to obtain a
bound on , we consider

Define . For a given , are i.i.d. random
variables of mean . Define . When

, is a random walk with a negative drift.
It is known (see [10, Ch. 7], especially Problem 7.12) that the
following bound holds:

(18)

where is the solution of the equation

In our case, the above equation reduces to

(19)

Using the above definitions and results,
, provided . Now we are

ready to bound

This suggests an online lazy schedule , where
is there to ensure stability. We will call this schedule

Lazy .
The schedule Lazy , where is calculated as described

above for , , and is plotted
in Fig. 8 (for ). Note that as grows, asymptotes to

in the figure, and in general, it asymptotes to .
Table IV summarizes results of the comparison of Lazy with

Deterministic on a bursty arrival process. Comparing Tables III
and IV shows that Lazy is a better schedule for the bursty ar-
rivals process than is Lazy , as ought to be the case.
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Fig. 8. A plot of versus for a lazy schedule designed for ,
, and with .

TABLE IV
BURSTY ARRIVALS: AVERAGE ENERGY/PACKET AND AVERAGE

DELAY/PACKET FOR LAZY AND DETERMINISTIC OVER AN INFINITE TIME
HORIZON. DELAY VALUES ARE IN MILLISECONDS

The simulation results demonstrate that lazy schedules
achieve significantly lower energy than the deterministic
schedule with a moderate increase in average delay. This
comparison with the deterministic schedule is important since,
for a given mean service time, the deterministic schedule
achieves the smallest average delay among all schedules that
are independent of the arrival process and hence oblivious
to backlogs [20]. In turn, this implies that the deterministic
schedule has the largest transmission times and hence the
lowest energy among backlog-oblivious schedules. The fact
that our suboptimal lazy schedule is more energy efficient than
the deterministic schedule demonstrates the advantage of lazy
scheduling.

VI. CONCLUSION

Conservation of energy is a key concern in the design of wire-
less networks. Most of the research to date has focused on trans-
mission power control schemes for interference mitigation and
only indirectly address energy conservation. In this paper, we
put forth the idea of conserving energy by lazy scheduling of
packet transmissions. This is motivated by the observation that
in many channel coding schemes the energy required to transmit
a packet over a wireless link can be significantly reduced by
lowering transmission power and transmitting the packet over a

longer period of time. However, information is often time-crit-
ical or delay-sensitive, hence transmission times cannot be arbi-
trarily long.We therefore considered packet transmission sched-
ules that minimize energy subject to a deadline or a delay con-
straint. Specifically, we obtained an optimal offline schedule for
a node operating under a deadline constraint. An inspection of
the form of this schedule naturally lead us to an online schedule,
which was shown, through simulations, to be quite energy-effi-
cient. We then relaxed the deadline constraint and provided an
exact probabilistic analysis of our offline scheduling algorithm.
We then devised an online algorithm, which varies transmission
times according to backlog and showed that it is more energy
efficient than a deterministic schedule with the same stability
region and similar delay.
Several important problems remain open. The most obvious

is that of finding the optimal online schedule in the finite and
infinite cases. The question of howmuch energy can be saved
by using lazy scheduling in practice has not been addressed in
the paper. The theoretical and simulation results presented here
encourage further investigation into the use of lazy scheduling
in real-world wireless networks.

APPENDIX

Consider a transmitter which, at time 0, has packets in the
queue. Suppose that packets arrive at this node in , with
the first of these arriving at time 0. This situation can bemodeled
as packets arriving in with
and . Then, as we have seen in Section V-A,
the optimal offline schedule will transmit the first packet for an
amount of time, say , which is given by

(20)

(21)

Here we analyze the optimal offline schedule by allowing
to approach infinity. Thus, suppose that the arrivals in
occur as a rate Poisson process and let go to infinity to yield

(22)

where the are i.i.d. mean exponential random variables.
To evaluate the distribution of , consider

(23)

(24)
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Since the are assumed to be i.i.d., mean , exponential
random variables,

Therefore, from (23) we at once see that for
all .
Hence, suppose . Then the are i.i.d.

random variables with a negative mean and is a
random walk with a negative drift. Evaluating the probability at
(24) is therefore equivalent to determining the probability that
a random walk with a negative drift never exceeds a positive
threshold of .
For notational convenience, define and

. Define the associated exponential mar-
tingale , where is yet to be determined. Also
define the stopping time and observe
that .
We shall consider the stopped exponential martingale and

use the optional stopping theorem [7] to determine
and hence . The details follow.
First, in order that be a martingale, we need to choose an
such that for every . In

particular, should be such that

(25)

(26)

But, is exponentially distributed with mean . Using this
in (26), we see that is the solution to the equation

(27)

It is not hard to see that, for a given and , there is a
unique that satisfies (27).
Continuing with the determination of , consider

:

(28)

(29)

(30)

where holds because on the set . By
the optional sampling theorem (see [15, Proposition IV-4-19]),
we obtain

(31)

Therefore, . To eval-
uate we determine
as follows. For , by definition of the stopping time ,

. For ,

where

since

Equality is due the memoryless property of the exponential
random variables . Using this to evaluate ,
we get

Using this in (31), we get that

Hence, we finally obtain

(32)

where solves (27).
Given the distribution of , one could numerically evaluate

. The approach of the next section allows us to express
explicitly.

A. An Alternative Analysis
Define and
.
Lemma 6:

(33)

Proof: We start by expressing the distribution function of
as

(34)

(35)

(36)

(37)

Note that
(recall the independence assumption). The Jacobian of
the transformation , is 1. Therefore,

, and (37) can
be written as

(38)
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(39)

Using the identity for any positive
random variable , we obtain from (39)

by the normalization . The -dimensional
volume

can be shown (by an induction argument) to equal

Substituting this into the above equation and integrating with
respect to yields

(40)

Since , Lemma 6 follows.
Corollary 1: Define and recall the

definition . Then,

(41)

Proof: The proof follows from monotone convergence.
Out of the proof of Lemma 6, we get the following inter-

esting results about i.i.d. exponential random variables (of mean
) and the convergence of their sample average to . To our

knowledge, these explicit results are not found in the literature.
Corollary 2: Define , and

. The following hold:
1)
2)
3)
4)
5) .
Proof: Part 1) follows by taking in (40). Part 2)

follows by setting in Lemma 6.
We now show parts 3)–5). For notational convenience, we set

for the time being; the results trivially scale by , as
will be clear in the calculations below.

To establish part 3), we write

(42)

where
. Recall that are arrival epochs in a Poisson

process. The condition is the same as saying that
arrivals occurred in , and it is well known that under this
condition are distributed as order statistics [10],
i.e.,

(43)

Therefore,

(44)

Substituting (44) into (42), we obtain
.

For part 4), write .
Or, more explicitly,

. From part 3),
, and from part 1), , so

. This result is
interesting because it says that given the current time average
exceeds the previous maximum, the average amount of the
excess is exactly . Finally, part 5) follows by setting
in Corollary 1.
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