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Abstract—The problem of document replacement in web caches
has received much attention in recent research, and it has been
shown that the eviction rule “replace the least recently used docu-
ment” performs poorly in web caches. Instead, it has been shown
that using a combination of several criteria, such as the recentness
and frequency of use, the size, and the cost of fetching a document,
leads to a sizable improvement in hit rate and latency reduction.
However, in order to implement these novel schemes, one needs to
maintain complicated data structures. We propose randomized al-
gorithms for approximating any existing web-cache replacement
scheme and thereby avoid the need for any data structures.
At document-replacement times, the randomized algorithm

samples documents from the cache and replaces the least
useful document from the sample, where usefulness is determined
according to the criteria mentioned above. The next least
useful documents are retained for the succeeding iteration. When
the next replacement is to be performed, the algorithm obtains

new samples from the cache and replaces the least useful
document from the new samples and the previously
retained. Using theory and simulations, we analyze the algorithm
and find that it matches the performance of existing document
replacement schemes for values of and as low as 8 and 2
respectively. Interestingly, we find that retaining a small number
of samples from one iteration to the next leads to an exponential
improvement in performance as compared to retaining no samples
at all.

Index Terms—Cache replacement scheme, past samples, ran-
domized algorithm, Web caching.

I. INTRODUCTION

THE ENORMOUS popularity of the World Wide Web in
recent years has caused a tremendous increase in network

traffic due to HTTP requests. Since the majority of web
documents are static, caching them at various network points
provides a natural way of reducing traffic. At the same time,
caching reduces download latency and the load on web servers.
A key component of a cache is its replacement policy, which

is a decision rule for evicting a page currently in the cache to
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make room for a new page. A particularly popular rule for page
replacement replaces the least recently used (LRU) page. This is
due to a number of reasons. As an online algorithm, it is known
to have the best competitive ratio,1 it only requires a linked list to
be efficiently implemented as opposed tomore complicated data
structures required for other schemes, and it takes advantage of
temporal correlations in the request sequence.
Suppose that we associate with any replacement scheme a

utility function, which sorts pages according to their suitability
for eviction. For example, the utility function for LRU assigns
to each page a value which is the time since the page’s last use.
The replacement scheme would then replace that page which is
most suitable for eviction.
Whereas for processor caches LRU and its variants have

worked very well [16], it has recently been found [4] that LRU
is not suitable for web caches. This is because some important
differences distinguish a web cache from a processor cache:
1) the size of web documents are not the same; 2) the cost
of fetching different documents varies significantly; and 3)
sort term temporal correlations in web request sequences are
not as strong. Thus, a utility function that takes into account
not only the recency of use of a web document, but also its
size, cost of fetching, and frequency of use can be expected
to perform significantly better. Recent work proposes many
new cache replacement schemes that exploit this point (e.g.,
LRU-Threshold [1], GD-Size [4], GD* [7], LRV [13], SIZE
[18], and Hybrid [19]).
However, the data structures that are needed for implementing

these new utility functions turn out to be complicated. Most of
them require a priority queue in order to reduce the time to find
a replacement from to , where is the number
of documents in the cache. Further, these data structures need
to be constantly updated (i.e., even when there is no eviction),
although they are solely used for eviction.
This prompts us to consider randomized algorithms which do

not need any data structures to support the eviction decisions.
For example, the particularly simple random replacement (RR)
algorithm evicts a document drawn at random from the cache
[9]. However, as might be expected, the RR algorithm does not
perform very well.
We propose to combine the benefits of both the utility

function based schemes and the RR scheme. Thus, consider a
scheme which draws documents from the cache and evicts
the least useful document in the sample, where the “usefulness”
1That is, there is no other deterministic online algorithm with a smaller com-

petitive ratio [9].
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of a document is determined by the utility function. Although
this basic scheme performs better than RR for small values of
, we find a big improvement in performance by refining it

as follows. After replacing the least useful of samples, the
identity of the next least useful documents is retained
in memory. At the next eviction time, new samples are
drawn from the cache and the least useful of these and

previously retained is evicted, the identity of the least
useful of the remaining is stored in memory, and so on.
Intuitively, the performance of an algorithm that works on

a few randomly chosen samples depends on the quality of the
samples. Therefore, by deliberately tilting the distribution of the
samples toward the good side, which is precisely what the re-
finement achieves, one expects an improvement in performance.
Rather surprisingly, we find that the performance improvement
can be exponential for small values of (e.g., 1, 2 or 3). As
the value of increases, one expects a degradation in perfor-
mance because bad samples are being retained and not enough
new samples are being chosen. This suggests there is an optimal
value of .We analytically demonstrate the above observations
and obtain an approximate formula for the optimal value of
as a function of .
The rest of the paper is organized to reflect the three main

parts of the paper: 1) a description of the proposed randomized
algorithm for document replacement (Section II); 2) an analysis
of its general features (Sections III and IV); and 3) a simula-
tion comparison, using web traces, of its performance relative
to the deterministic algorithms it approximates (Section V). Fi-
nally, Section VI discusses implementation issues and further
motivates the use of the randomized algorithm in practice, and
Section VII concludes the paper.
We conclude the introduction with a few remarks about the

theoretical contributions of the paper. A preliminary version of
the paper, presented at the IEEE INFOCOM’01 [12], contains
many of the algorithmic ideas and theoretical statements pre-
sented here. The present paper contains the complete details of
the analytical steps (e.g., complete proofs of theoretical state-
ments). The main algorithmic contribution of the paper is the
demonstration that carrying information between iterations will
greatly improve the performance of iterative randomized algo-
rithms. While this has been applied to web-cache replacement
policies in this paper, it is equally applicable to other iterative
randomized algorithms of interest in networking (e.g., load bal-
ancing [15], switch scheduling [17], [14]). Thus, the theoretical
methods used here may have wider applicability. In particular,
the couplingmethod used to establish that there is a right amount
of information to carry between iterations (see Section III-A and
the Appendix), and then approximately determining this right
amount of information using an exponential martingale argu-
ment (Section IV) seem to be of interest in their own right.
Finally, other additions to [12] are more extensive simulations
using weekly NLANR traces [21], and a section devoted to im-
plementation issues and to the practical motivation for thiswork.

II. THE ALGORITHM

The first time a document is to be evicted, samples are
drawn at random from the cache and the least useful of these

Fig. 1. The randomized algorithm.

is evicted. Then, the next least useful documents are
retained for the next iteration. Also, when the next replacement
is to be performed, the algorithm obtains new samples
from the cache and replaces the least useful document from the

new samples and the previously retained. This pro-
cedure is repeated whenever a document needs to be evicted. In
pseudo-code the algorithm is shown in Fig. 1.
An error is said to have occurred if the evicted document does

not belong to the least useful th percentile of all the documents
in the cache, for some desirable values of . Thus, the goal of
the algorithmwe consider is tominimize the probability of error.
We shall say that a document is useless if it belongs to the least
useful th percentile.2
It is interesting to conduct a quick analysis of the algorithm

described above in the case where so as to have a bench-
mark for comparison. Accordingly, suppose that all the docu-
ments are divided into bins according to usefulness and
documents are sampled uniformly and independently from

the cache. Then the probability of error equals ,3
which approximately equals . By increasing , this
probability can be made to approach 0 exponentially fast. (For
example, when and , the probability of error is
approximately 0.08. By increasing to 60, the probability of
error can be made as low as 0.0067.)
But it is possible to do much better without doubling ! That

is, even with , by choosing , the probability
of error can be brought down to . In the next few
sections, we obtain models to further understand the effect of
on performance.
We end this section with the following remark. Whereas it is

possible for a document whose id is retained in memory to be
accessed between iterations, making it a “recently used docu-
ment,” we find that in practice the odds of this happening are
negligibly small.4 Hence, in all our analyses, we shall assume
that documents which are retained in memory are not accessed
between iterations.

2Note that samples that are good eviction candidates will be called “useless”
samples since they are useless for the cache.
3Although the algorithm samples without replacement, the values of are

so small compared to the overall size of the cache that almost
exactly equals the probability of error.
4Trace driven simulations in Section V support our observation.
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III. MODEL AND PRELIMINARY ANALYSIS
In this section, we derive and solve a model that describes the

behavior of the algorithm precisely. We are interested in com-
puting the probability of error, which is the probability that none
of the documents in the sample is useless for the cache, for
any given and and for all .
We proceed by introducing some helpful notation. Of the

samples retained at the end of the th iteration, let
( ) be the number of useless documents. At the
beginning of the th iteration, the algorithm chooses
fresh samples. Let , be the number of
useless documents coming from the fresh samples. In
the th iteration, the algorithm replaces one document out of
the total available (so long as )
and retains documents for the next iteration. Note that it is
possible for the algorithm to discard some useless documents
because of the memory limit of that we have imposed.
Define to be precisely the

number of useless documents in the sample just prior to the th
document replacement, that the algorithm would ever replace at
eviction times. If , then the algorithm commits an error
at the th eviction. It is easy to see that is a Markov chain
and satisfies the recursion

and that is binomially distributed with parameters
and . For a fixed and , let ,

, denote the probability that useless doc-
uments for the cache, and thus good eviction candidates, are
acquired during a sampling. When it is clear from the context
we will abbreviate to . Fig. 2 is a schematic of the
above Markov chain.
Let denote the transition matrix of the chain for a

given value of . The form of the matrix depends on whether
is smaller or larger than . Since we are interested in small

values of , we shall suppose that .5 It is immediate
that is irreducible and has the general form

...
. . .

...

As may be inferred from the transition matrix, the Markov
chain models a system with one deterministic server, binomial
arrivals, and a finite queue size equal to (the system’s overall
5Fig. 3 suggests that the at which the probability of error is minimized is

less than .

Fig. 2. Sequence of events per iteration. Note that eviction takes place prior to
resampling.

size is ). An interesting feature of the system is that, as
increases, the average arrival rate, ,
decreases linearly and the maximum queue size increases
linearly.
Let denote the stationary distribution

of the chain . Clearly is the probability of error as defined
above. Let be an matrix, with

for all . Let be a matrix
with for all . Since is irreducible, is
invertible [10] and

(1)

Fig. 3 shows a collection of plots of versus for different
values of and . The minimum value of is written on top
of each figure. We note that given and there are values of

for which the error probability is very small compared
to its value at . We also observe that there is no need
for to be a lot bigger than the number of bins for the
probability of error to be as close to zero as desired, since even
for theminimum probability of error is extremely
small. Finally, we notice that for small values of there is a
huge reduction in the error probability and that the minimum is
achieved for a small . As increases further the performance
deteriorates linearly.
The exponential improvement for small can be intuitively

explained as follows. For concreteness, suppose that
and that the Markov chain has been running from time
onwards (hence, it is in equilibrium at any time ). The
relationship imme-
diately gives that

. Supposing that ,
and . Therefore
. Compare this number with the case , where

, and the claimed exponen-
tial improvement is apparent.
The linear increase of for large , evident from Fig. 3, can

be seen from the following argument. As increases, the av-
erage arrival rate decreases and the queue size increases. Thus,
for large , the queue virtually never overflows and good evic-
tion candidates are not discarded due to a lack of storage. The
problem is that the smaller arrival rate brings fewer good evic-
tion candidates, making the linear decrease of the arrival rate the
dominant phenomenon in performance degradation. Recall that,
for a queue with arrival rate and service rate when the over-
flow probability is negligible, the probability that it is empty,
, equals . In our case ,

showing the linear increase in with .
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Fig. 3. Probability of error ( probability not a useless document for the
cache is replaced) versus number of documents retained ( ).

A. A Closer Look at the Performance Curves
From the above discussion and Fig. 3, we may deduce that

the error probability as a function of and for given and
has the following features. As increases from 0, the error

probability decreases exponentially, flattens out, and then in-
creases linearly. In particular, it appears that error probability
is a convex function of . The rest of this section shows that
this convexity is a general feature of the algorithm and holds for
arbitrary values of and .
To establish convexity directly it would have helped greatly

if could be expressed as a function of the elements of
in closed form. Unfortunately, this is not the case and we

must use an indirect method, which seems interesting in its own
right. Our method consists of relating to the quantity

, which is the number of overflows in the time
interval from a buffer of size with average arrival rate

.
Let .
Theorem 1: The probability of error is convex in .
Proof: Let be the number of arrivals in .

Then the probability the system is full as observed by arrivals,
or equivalent the probability of drops, equals

Lemma 3 below implies that is convex in . Pro-
ceeding, equating effective arrival and departure rates, we ob-
tain

or

or
(2)

Since is linear in , and
is convex in , (2) implies that is
convex in .
To complete the proof, it remains to show that is

convex in . The proof of the convexity of is carried
out in Lemmas 1–3 below. In the following, we abbreviate

to when the arrival process does
not depend on , and to when the buffer size is
constant, regardless of the value of . Lemma 1 shows that

is convex in for all . Lemma 2 shows the
convexity of . Finally, Lemma 3 shows
the convexity of .
For now, we only give a sketch of the somewhat combina-

torially involved proofs of these results. The full proofs can be
found in the Appendix.
Lemma 1: is a convex function of , for each
.

Sketch of Proof: To prove convexity it suffices to show that
the second order derivative of the number of drops is nonnega-
tive; i.e., that

. This can be done by comparing the number of drops
, , and from systems with

buffer sizes , , and , respectively, under identical
arrival processes.
Essentially, the comparison entails considering four situa-

tions for buffer occupancies in the three systems, as illustrated
in Fig. 17 in the Appendix.
Let .
Lemma 2: is a convex function of when

.
Sketch of Proof: We need to show

by considering three systems
with the same buffer sizes and binomially distributed arrival
processes with average rates , , and .
Thus, there will be common arrivals and exclusive arrivals as
categorized below.
1) An arrival occurs at all three systems.
2) An arrival occurs only at the system with buffer size

.
3) An arrival occurs at the two systems with buffer sizes

and and there is no arrival at the system with
buffer size .

Due to the arrival rates being as in the hypothesis of the lemma,
category 2) and 3) arrivals are identically distributed. Using this
and combinatorial arguments, one can then show that
is convex.
Lemma 3: is a convex function of when

.
Sketch of Proof: We consider three systems of buffer sizes
, , and , whose arrival processes are binomially

distributed with rates , , and . This is
a combination of Lemma 1 and 2.

IV. ON THE OPTIMAL VALUE OF

The objective of this section is to derive an approximate
closed-form expression for the optimal value of for a given
and . This expression [see (6)] is simple and, as Table II
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TABLE I
OPTIMUM VALUES OF AND FOR VARIOUS AND

TABLE II
COMPARISON OF OPTIMUM VALUES OF FOR VARIOUS AND ,

CALCULATED FROM MG APPROXIMATION ( , ) AND FROM MC ( )

shows, it is quite accurate over a large range of values of and
.
Let be the optimal value of . As

remarked earlier, even though the form of the transition matrix,
, allows one to write down an expression for , this

expression does not allow one to calculate . Thus, we have
to numerically solve (1), compute for all ,
and read off for various values of and , as in Table I.
This table is to be read as follows. Suppose and
%. Then minimum value of is 0.0732 and it is achieved at

.
Even though there is no exact closed-form solution from

which one might calculate , we can derive an approximate
closed-form solution using elementary martingale theory [6].
Recall that is the number of useless documents in the

sample and that .6
The boundaries at 0 and complicate the analysis of this
Markov chain (MC). The idea is to work with a MC that has no
boundaries and then use the Optional Stopping Time Theorem
to take into account the boundaries at 0 and .
Since we want to operate away from the event ,

we assume that the MC will have a positive drift toward the
boundary at . Let . Then
will have a negative drift toward the boundary at 0.
Let be the corresponding unreflected MC which follows

the equation . Consider the exponential
martingale (MG)

where will be chosen so that . Since

we obtain that must satisfy the equation

Since is binomially distributed with parameters and
, .

Therefore, we require that solve the equation

(3)

Since there is no general closed-form solution to the above
equation, using a Taylor’s approximation for and

and keeping terms up to , we obtain

(4)

Let or . Then is
a bounded stopping time and we can use the Optional Stopping
Time Theorem [6] to obtain

Let . Then and thus

(5)

From (5), to minimize the probability of error, it suffices to
maximize over . Using (4) and elementary
algebra, we conclude that the optimal value is given by

(6)

Some comments about the approximations we have made in
the above derivation are in order. We have dropped the term

to obtain the bound in inequality (5).
6The symbols and denote the minimum and maximum operations, re-

spectively.
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Fig. 4. Comparison of the number of samples required to achieve the same
probability of error with ( ) and without ( ) memory.

This term is not negligible, in general. However, it is negligible
for positive , and sufficiently negative,7 which holds
for reasonably large values of . When the term is not
negligible, the approximation for in (6) can differ from the
true optimum by 1 or 2.
In Table II, we compare the results for the optimal obtained

by: 1) (6), denoted by ; 2) numerically solving (3) for and
then using the bound in (5), denoted by ; and 3) by the MC
model, denoted by . This table is to be read as follows. For
example, suppose and , the optimal equals:
1) ; 2) ; and 3) . Note that
and are very close to unless the number of samples is
very close to the number of bins.
So far we have derived an approximate closed-form expres-

sion for . Here we comment on the performance improve-
ment when a memory of is used. We have mentioned that
introducing memory leads to an exponential improvement in
performance. A direct way of verifying this is to compare the
number of samples needed to achieve a certain performance
with and without memory. In particular, fix an and, for each

, compute the minimum probability of error obtain-
able using the optimal value of memory. Then compute the
number of samples needed to achieve the same probability of
error without memory. Denote by and the number of
samples needed to obtain the same error probability with and
without memory, respectively. Fig. 4 plots versus for
four different values of as the error probability varies.
There is no closed-form expression for the curves in Fig. 4.

However, one can obtain an upper bound on as follows. One
of the events that will lead to an error is when all the
fresh samples of all the consecutive iterations will be bad
samples. Thus, or

. In a different context, Shah and Prabhakar
[15] proved that .

7Note that is positive when the number of samples are more than
the number of bins , and becomes more negative the more and better
samples we have.

V. TRACE DRIVEN SIMULATIONS

We present simulations using web traces to study the perfor-
mance of our algorithm under real traffic. In particular, we ap-
proximate deterministic cache replacement schemes using our
randomized algorithm, and compare their performances. Re-
call that any cache replacement algorithm is characterized by a
utility function that determines the suitability of a page for evic-
tion. The main issues we wish to understand are the following.
• How good is the performance of the randomized algorithm
according to realistic metrics like hit rate and latency? It
is important to understand this because we have analyzed
performance using the frequency of eviction from desig-
nated percentile bins as a metric. This metric has a strong
positive correlation with realistic metrics but does not di-
rectly determine them.

• Our analysis in the previous sections assumes that docu-
ments retained in memory are not accessed between iter-
ations. Clearly, in practice, this assumption can only hold
with a high probability at best. We show that this is indeed
the case and determine the probability that a sample re-
tained in memory is accessed between iterations.

• How long do the best eviction candidates stay in the cache?
If this time is very long (on average), then the randomized
scheme would waste space on “dead” items that can only
be removed by a cache flush.

Of the three items listed above, the first is clearly the most
important and the other two are of lesser interest. Accordingly,
the bulk of the section is devoted to the first question and the
other two are addressed toward the end.

A. Deterministic Replacement Algorithms
We shall approximate the following two deterministic algo-

rithms: 1) LRU and 2) GD-Hyb, which is a combination of the
GD-Size [4] and the Hybrid [19] algorithms. LRU is chosen be-
cause it is the standard cache replacement algorithm. GD-Hyb
represents the class of new algorithms which base their docu-
ment replacement policy on multiple criteria (recentness of use,
size of document, cost of fetching documents, and frequency of
use). We briefly describe the details of the deterministic algo-
rithms mentioned above.
1) LRU: The utility function assigns to each document the
most recent time that the document was accessed.

2) Hybrid [19]: The utility function assigns eviction values
to documents according to the formula

where is an estimate of the latency for connecting with
the corresponding server, is an estimate of the band-
width between the proxy cache and the corresponding
server, is the number of times the document has been
requested since it entered the cache (frequency of use),
is the size of the document, and , are weights.8
Hybrid evicts the document with the smallest value of .

8In the simulations we use the same weights as in [19].
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3) GD-Size [4]: Whenever there is a request for a docu-
ment, the utility function adds the reciprocal of the
document’s size to the currently minimum eviction value
among all the documents in the cache, and assigns the
result to the document. Thus, the eviction value for doc-
ument is given by

in cache

Note that the quantity in cache is increasing
in time and it is used to take into account the recentness
of a document. Indeed, since whenever a document is ac-
cessed its eviction value is increased by the currently min-
imum eviction value, the most recently used documents
tent to have larger eviction values. GD-Size evicts the
document with the smallest value of .

4) GD-Hyb uses the utility function of Hybrid in place of the
quantity in the utility function of GD-Size. Thus, its
utility function is as follows:

where

We shall refer to the randomized versions of LRU and
GD-Hyb as RLRU and RGD-Hyb respectively. Note that the
RGD-Hyb algorithm uses the among the samples, and
not the global among all documents in the cache.
So far we have described the utility functions of some de-

terministic replacement algorithms. Next, we comment on the
implementation requirements of those schemes.
LRU can be implemented with a linked list that maintains

the order in which the cached documents were accessed so far.
This is due to the “monotonicity” property of its utility func-
tion; whenever a document is accessed, it is the most recently
used. Thus, it should be inserted at the bottom of the list and the
least recently used document always resides at the top of the list.
However, most algorithms, including those that have the best
performance, lack the monotonicity property and they require
to search all documents to find which to evict. To reduce com-
putation overhead, they must use a priority queue to drop the
search cost to , where is the number of documents
in the cache. In particular, Hybrid, GD-Size, and GD-Hyb must
use a priority queue.
The authors of [13] propose an algorithm called Lowest Rel-

ative Value (LRV). This algorithm uses a utility function that is
based on statistical parameters collected by the server. By sep-
arating the cached documents into different queues according
to the number of times they are accessed, or their relative size,
and by taking into account within a queue only time locality, the
algorithm maintains the monotonicity property of LRU within
a queue. LRV evicts the best among the documents residing at
the head of these queues. Thus, the scheme can be implemented
with a constant number of linked lists, and finds an eviction can-
didate in constant time. However, its performance is inferior to
algorithms like GD-Size [4]. Also, the cost of maintaining all
these linked lists is still high.
The best cache replacement algorithm is in essence the one

with the best utility function. In this paper we do not seek the

TABLE III
TRACE WORKLOAD CHARACTERISTICS

best utility function. Instead, we propose a low-cost, high-per-
formance, robust algorithm that treats all the different utility
functions in a unified way.

B. Web Traces
The traces we use are taken from Virginia University, Boston

University, and National Laboratory for Applied Network Re-
search (NLANR). In particular, we have the following traces.
• The Virginia [18] trace consists of every URL request ap-
pearing on the Computer Science Department backbone
of Virginia University with a client inside the department,
naming any server in the world. The trace was recorded
for a 37 day period in September and October 1995. There
are no latency data on that trace thus it can not be used to
evaluate RGD-Hyb.

• The Boston [5] trace consists of all HTTP requests origi-
nating from 32 workstations. It was collected in February
1995 and contains latency data.

• The NLANR [21] traces consist of two sets, one daily
trace, and a weekly trace. The daily trace was recorded
the 23rd of September 2000, while the weekly trace was
collected from the 22nd to the 28th of September 2000,9
Both of them contain latency data.

We only simulate requests with a known reply size. Table III
presents the workload characteristics of the traces, namely the
total number of requests, the number of unique requests, the
number of one-timers, and a popularity-parameter, , resulting
from fitting the popularity distribution of the documents of each
trace to a Zipf-like distribution.10

C. Results
The performance criteria used are:
1) the hit rate (HR), which is the fraction of client-requested
URL’s returned by the proxy cache;

2) the byte hit rate (BHR), which is the fraction of client
requested bytes returned by the proxy cache;

3) the latency reduction (LR), which is the reduction of
the waiting time of the user from the time the request
is made till the time the document is fetched to the ter-
minal (download latency), over the sum of all download
latencies.

For each trace, HR, BHR, and LR are calculated for a cache
of infinite size, that is a cache large enough to avoid any evic-
tions. Then, they are calculated for a cache of size 0.5%, 5%,

9NLANR traces consist of daily and weekly traces of many sites; the one we
used is the PA site.
10Let be the probability of requesting the th most popular document of a

trace. In practice, is known to be Zipf-like [2], i.e., , where is
the popularity parameter of the trace.
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TABLE IV
ABSOLUTE VALUES OF HR, BHR, AND LR FOR THE FOUR TRACES, FOR

AN INFINITE SIZE CACHE

Fig. 5. HR comparison between LRU and RLRU.

10%, and 20% of the minimum size required to avoid any evic-
tions. This size is 500 MB, 900 MB, 2 GB, and 20 GB, for
Virginia, Boston, daily NLANR, and weekly NLANR traces,
respectively. Table IV shows the absolute values of HR, BHR,
and LR for the four traces, for an infinite size cache. Notice that
the HR of the NLNAR traces is lower than the HR of the other
traces, since NLANR caches are second-level caches.11
All the traces give similar results. Below, we show the

performance of RLRU using the Virginia trace, then present
simulation results using the Boston trace and examine the
performance RGD-Hyb, and finally evaluate both RLRU and
RGD-Hyb using the longer and more recent NLANR traces.
We examine how well the randomized algorithm can approx-

imate LRU, using the Virginia trace. Fig. 5 presents the ratio of
the HR of LRU, RLRU, and RR over the HR achieved by an in-
finite cache, using the Virginia trace. As expected, the more the
samples the better the approximation of LRU by RLRU. Note
that and are enough to make RLRU perform
almost as good as LRU, and even , give good re-
sults. Fig. 6 presents the ratio of the BHR of LRU, RLRU, and
RR, over the BHR achieved by an infinite cache. Note again that

and are enough to make RLRU perform almost
as good as LRU.
Next, we examine how well the randomized algorithm can

approximate GD-Hyb.We present results from the Boston trace.
Fig. 7 presents the ratio of the HR of GD-Hyb, RGD-Hyb, and
11First-level caches exploit most of the temporal locality in web-request se-

quences.

Fig. 6. BHR comparison between LRU and RLRU.

Fig. 7. HR comparison between GD-Hyb and RGD-Hyb.

RR, over the HR achieved by an infinite cache. As expected,
the more the samples the better the approximation of GD-Hyb
by RGD-Hyb. The performance curve of RGD-Hyb for
and is very close to the performance curve of GD-Hyb.
For and the curves almost coincide. Note that
the Boston trace has low correlation among the requests and, as
a result, RR performs relatively well.
Fig. 8 presents the ratio of LR achieved by GD-Hyb,

RGD-Hyb, and RR, over the LR achieved by an infinite cache.
It is again the case that values of and as low as 8 and 2,
respectively, are enough for RGD-Hyb to perform very close to
GD-Hyb.
The traces we used so far are taken from universities, and they

are relatively small and old. Next, we present the results from
the daily NLANR trace. Our goal is twofold: to evaluate the
randomized algorithm under more recent and larger traces, and
examine the performance of RLRU and RGD-Hyb in the same
trace.
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Fig. 8. LR comparison between GD-Hyb and RGD-Hyb.

Fig. 9. HR comparison between LRU and RLRU.

Figs. 9 and 10 present the ratio of HR of various schemes
over the HR achieved by an infinite cache. The former figure
compares LRU to RLRU, and the later GD-Hyb to RGD-Hyb.
In Fig. 9, RLRU nearly matches LRU for and as small as
8 and 2, respectively. In Fig. 10 RGD-Hyb requires 30 samples
and a memory of 5 to approximate very close GD-Hyb, but
its performance is superior to LRU. Indeed GD-Hyb achieves
around 100% of the infinite cache performance while LRU
achieves below 90%. Note that this trace has a lot more
correlation on its requests than the Boston trace since RR’s
performance is 15% worse than that of GD-Hyb.
Figs. 11 and 12 present the ratio of RL of various schemes

over the RL achieved by an infinite cache. The former figure
compares LRU to RLRU, and the later GD-Hyb to RGD-Hyb.
In Fig. 11 RLRU nearly matches LRU for and as small
as 3 and 1, respectively. In Fig. 12 RGD-Hyb performs slightly
better than GD-Hyb. This somewhat unexpected result is caused
because GD-Hyb makes some suboptimal eviction decisions on
that particular trace that could be removed by fine-tuning the

Fig. 10. HR comparison between GD-Hyb and RGD-Hyb.

Fig. 11. LR comparison between LRU and RLRU.

two terms in its utility function.12 Despite that fact, GD-Hyb
performs better than LRU does with respect to RL, since LRU
does not take into account any latency information.
The last trace from which we present results is the weekly

NLANR trace. This trace consists of roughly 3 million requests
and thus approximates reality better. Cache size is now an issue.
In particular, 20% of the maximum size required to avoid any
evictions corresponds to 4GB.
Figs. 13 and 14 present the ratio of HR of various schemes

over the HR achieved by an infinite cache. The former figure
compares LRU to RLRU, and the later GD-Hyb to RGD-Hyb.
Since these figures are similar to Figs. 9 and 10, the performance
of the randomized algorithm appears to be unaffected by the
trace size. Note that the difference in the performance of LRU
and GD-Hyb is not significant for a relative cache size of 20%,
but for smaller cache sizes like 10% and 5% it is.
12Since all the deterministic cache replacement schemes rely on heuristics to

predict future requests, their eviction decision may be suboptimal. Thus, ran-
domized approximations of these algorithms may occasionally perform better.
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Fig. 12. LR comparison between GD-Hyb and RGD-Hyb.

Fig. 13. HR comparison between LRU and RLRU.

Figs. 15 and 16 present the ratio of BHR of various schemes
over the BHR achieved by an infinite cache. The former figure
compares LRU to RLRU, and the later GD-Hyb to RGD-Hyb.
The randomized algorithmworks well with respect to BHR also.
Note that RGD-Hyb performs slightly better than GD-Hyb does
for smaller cache sizes and, more importantly, LRU performs
better than GD-Hyb does. This somewhat unexpected result is
caused because GD-Hyb makes relatively poor choices in terms
of BHR by design, since it has a strong bias against large size
documents even when these documents are popular. This subop-
timal performance of GD-Hyb is inherited from SIZE [18] and
Hybrid [19] and could be removed by fine-tuning. All the three
schemes trade in HR for BHR.
Recently, an algorithm called GreedyDual* (GD*) has been

proposed [7] that achieves superior HR and BHR when com-
pared to other web cache replacement policies. This algorithm
is a generalization of GD-Size. GD* adjusts the relative worth
of long-term popularity versus short-term temporal correlation

Fig. 14. HR comparison between GD-Hyb and RGD-Hyb.

Fig. 15. BHR comparison between LRU and RLRU.

of references. It achieves that by dynamically adapting to the
degree of temporal correlation of the web request streams. GD*
requires a priority queue to be efficiently implemented and thus
it is a good candidate to be approximated by our randomized
algorithm.
From the figures above, it is evident that the randomized ver-

sions of the schemes can perform competitively with very small
number of samples and memory. One would expect to require
more samples and memory to get such good performance. How-
ever, since all the online cache replacement schemes rely on
heuristics to predict future requests, it is not necessary to exactly
mimic their behavior in order to achieve high performance. In-
stead, it usually suffices to evict a document that it is within a
reasonable distance from the least useful document.
There are two more issues to be addressed. First, we wish

to estimate the probability that documents retained in memory
are accessed between iterations. This event very much depends
on the request patterns and is hard to analyze exactly. Instead,
we use the simulations to estimate the probability of occurring.
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Fig. 16. BHR comparison between GD-Hyb and RGD-Hyb.

Thus, we change the eviction value of a document retained in
memory whenever it is accessed between iterations, which de-
teriorates its value as an eviction candidate. Also, we do not ob-
tain a new, potentially better, sample. Despite this, we find that
the performance is not degraded. The reason for this is that our
policy for retaining samples inmemory, deliberately chooses the
best eviction candidates. Therefore, the probability that they are
accessed is very small. In particular, it is less than 10 in our
simulations.
Second, we wish to verify that the randomized versions of the

schemes do not produce dead documents. Due to the sampling
procedure, the number of sampling times that a document is not
chosen follows a geometric distribution with parameter roughly
equal to over the total number of documents in the cache.
This is around 1/100 in our simulations. Hence, the probability
that the best ones are never chosen is zero. And the best ones
are chosen once every 100 sampling times or so.

VI. IMPLEMENTATION ISSUES

In the previous sections, we established that a small number
of samples, six fresh and two carried from one iteration to the
next, is sufficient for the randomized algorithm to have good
performance. In this section, we discuss in detail the implemen-
tation savings by using the randomized algorithm.
There are two main operations that a web cache has to

support: access to arbitrary cached documents and eviction of
relatively useless documents to make room for new documents.
State-of-the-art web caches access documents through a hash

table [20], which has constant time lookups. Also, this hash table
is stored in the RAM [20], which ensures that any document
can be obtained in a single disk read. Thus, accessing arbitrary
cached documents is done very efficiently. This operation is or-
thogonal to the eviction scheme used.
Different eviction schemes have different implementation

requirements. As previously discussed, LRU can be imple-
mented with a linked list that maintains the temporal order in

which the cached documents were accessed. High performance
algorithms like GD-Hyb require a priority queue to be im-
plemented efficiently. Thus, for every insertion, they perform

operations, where is the number of documents
in the cache. The size of a typical web cache today is tens
of GBs. Since the average size of web documents is close
to 10 KB, is typically many millions [20]. These schemes
perform an insertion operation at every access time, since
even at hit times the utility value of the document changes
and the document should be reinserted at a new position.
The implementation savings due to the randomized eviction

scheme are the following. First, the randomized scheme saves
memory resources from not maintaining a data structure for
eviction purposes. However, the parameters used by the utility
function, like the frequency and recency of use, still need to be
stored in order to be available when the document is chosen as a
sample. Thus, for every document, there will be a corresponding
object in RAM holding its utility parameters.
Second, the proposed randomized algorithm draws about

six fresh samples per eviction time, instead of performing
one insertion and one deletion operation in a priority queue
per access time. A sample can be easily obtained in constant
time by randomly choosing one of the objects that hold the
utility parameters of the documents, or one of the entries of
the hash table used to access the documents.13 Thus, drawing
random samples is cheaper than updating a priority queue.
Suppose the HR is around 50%. Then, there is one miss in

every two accesses. Assuming there is no correlation between
the size of a document and its popularity [3], every miss causes
on average one eviction. Thus, priority queue updates take place
twice as often as random sampling. For higher hit rates the CPU
savings increase further, for example, for hit rates close to 75%,
priority queue updates take place four times as often as random
sampling.14
Finally, the randomized algorithm does not need to recompute

the utility value of a cached document every time it is accessed.
It performs this operation only with the samples obtained at
eviction times if their utility value is not up to date. However,
as a consequence, whenever RGD-Hyb computes utility values,
it uses the minimum utility value among the samples instead
of the global minimum among all documents. The simulations
in Section V take this into account and show that it causes no
performance degradation.
This work focuses on implementation savings with respect

to CPU and memory resources. In some systems, the disk I/O
resources are more important. Eviction schemes in such systems
typically aim to reduce the number of and the time taken by disk
reads/writes, and ignore parameters like the recency of use of a
document. Using the ideas presented in this paper it is possible
to take such parameters into account at a minimal overhead, and
thus increase the hit rate without trading off disk I/O resources.

13Sampling is done without accessing the disk. It is only after the best
sample is identified that the corresponding document is accessed on the
disk in order to be evicted.
14HRs up to 70% are quite common [7], [13].
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VII. CONCLUSION

Motivated by the need to reduce the complexity of data
structures required by good document replacement schemes
proposed in the literature, we have introduced a randomized
algorithm that requires no data structure. This saves both the
memory used up by the data structure and the processing power
needed to update it.
Being randomized, the performance of our algorithm depends

crucially on the quality of the samples it obtains. We observe
that retaining the best unused samples from one iteration to
the next improves the quality of the samples and leads to a
dramatic improvement in performance. An analysis of the al-
gorithm provides insights about its features and a formula for
determining the right parameters for approximating the perfor-
mance of any deterministic replacement scheme as closely as
desired. Trace-driven simulations show that a small number of
samples, six fresh and two carried from one iteration to the next,
is sufficient for a good performance.
We believe that the idea of using memory to improve the

quality of samples in iterative randomized algorithms is of
general interest, possibly applicable in other situations.

APPENDIX

Proof of Lemma 1
Convexity follows from showing that the second derivative of

the cumulative number of drops is nonnegative:

for all (7)

Essentially, this reduces to comparing the cumulative number of
drops up to time , , , and ,
from systems with buffer sizes , , and , re-
spectively. The three systems have identical arrival processes
and start with empty buffers at time 0. In the proof, we in-
duce on each arrival, since these are common to all three sys-
tems, and hence this is equivalent to inducing over time. De-
fine to be the instantaneous difference in drops caused by
the common arrival which occurs at time . Then

.
To determine , consider the situation depicted in Fig. 17.

The three buffers are placed next to each other, in increasing
order of size. The shaded boxes in the figure represent occu-
pied buffer spaces and the white boxes represent empty buffer
spaces. If all three buffers have empty spaces, then no drops will
occur. Thus, it suffices to consider cases where at least one of
the buffers is full.
We claim that there are only four possible cases to consider

where at least one buffer is full, and these are depicted in Fig. 17.
The following general observation, whose proof is inductive,
easily verifies the claim. Consider any two systems and
with buffer sizes and , respectively. Suppose
that and have identical arrival processes and there is exactly
one departure from each nonempty system in each time slot.
Then the buffer occupancies of system and , denoted by

and respectively, will always satisfy

Fig. 17. Possible cases of buffer occupancies for Lemma 1.

or . Therefore, the only cases to consider are
the ones shown in Fig. 17.
An inspection of the four cases shows that for each common

arrival the values of are given by 1) , 2) ,
3) , and 4) . Thus, under Cases 1, 3 and 4 ,
and the only troublesome case is 2. Note, however, that every
instance of Case 2 is preceded by at least one instance of Case
1. Therefore, the negative values of Case 2 are offset by the
positive values of Case 1 and it follows that for all
.

Proof of Lemma 2
We need to show

(8)

by considering three systems with the same buffer sizes and
arrival rates that drop linearly with .
In particular, the arrival processes , , and

to these systems are binomially distributed with average rates
, ,

and respectively. Note that
the processes and stochastically dominate15 .
Thus, we can use a coupling argument [8] to categorize arrivals
as follows.
1) Common. An arrival occurs at all three systems. Common
arrivals are Binomially distributed with average rate

.
2) Single. An arrival occurs only at the system with buffer
size . Single arrivals are Bernoulli(n/100).

3) Double. An arrival occurs at the two systems with
buffer sizes and and there is no arrival at the
system with buffer size . Double arrivals are also
Bernoulli(n/100).

Define to be the instantaneous difference in
drops caused by arrival which occurs at time . Then,

. If all three buffers have empty spaces, then no
drops will occur. Thus, it suffices to consider cases where at
least one of the buffers is full.
Let , , and be the buffer

occupancy of a buffer with average arrival rate , ,
and , respectively. Note that for any time ,

. There are three cases to consider
15A process stochastically dominates iff for

all .
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Fig. 18. Possible cases when the buffer sizes are the same.

as shown in Fig. 18. Let be the common buffer size. Case 1 is
characterized by , ,
Case 2 by , , and Case
3 by .
In Case 1, for common, single, and double arrivals.

In Case 2, equals 1 for single arrivals, and for double
and common arrivals. In Case 3, equals 1 for single, 0 and
common, and for double arrivals. Since single and double
arrivals are identically distributed, as their s cancel
out in Cases 2 and 3. Thus, it suffices to show that the negative
effect of common arrivals in Case 2 is cancelled out by the pos-
itive effect of common, single, and double arrivals in Case 1.
We say a single departure takes place if ,

, , and a there is a departure.
We say a double departure takes place if ,

, , and there is a departure.
Assertion 1: changes at most by one

per arrival or departure. is increased by
one, if and only if a single arrival is not dropped.

is decreased by one, if and only if a common or a
double arrival comes in Case 1, or there is a single departure.
Assertion 2: changes at most by one

per arrival or departure. is increased
by one, if and only a double arrival is not dropped, or a double
arrival comes in Case 1. is decreased by
one, if and only if a common arrival comes in Case 2, or there
is a double departure.
For an arrival or a departure event , let

be the number of times the
event takes place in the interval divided by as .
Using this notation, let

single departure
double departure

single arrival not dropped
double arrival not dropped

single arrival in Case 1
double arrival in Case 1
common arrival in Case 1
common arrival in Case 2 .

Assertion 3: , ,
.

Assertion 1 implies

Assertion 2 implies

Using the above two equations and Assertion 3, we obtain

(9)

and thus the negative effect of common arrivals in Case 2 is can-
celled out by the positive effect of common, single, and double
arrivals in Case 1.

Proof of Lemma 3
We need to show

(10)

by considering three systems of buffer sizes , and
and average rates , and , respectively.
Let .
Lemma 2 implies

(11)

We need to show

(12)

By adding and subtracting and
in (12) and using (11), it is easy to see that it

suffices to show

By adding and subtracting in the right-hand
side of this equation, it is easy to see that it suffices to show

(13)
and

(14)

Lemma 1 implies that (14) holds. To see why (13) holds, cat-
egorize arrivals to basic arrivals with rate and excess
arrivals with rate , and notice that there is no
way for excess arrivals to increase , without also
increasing .

ACKNOWLEDGMENT

The authors thank D. Engler for conversations about cache
replacement schemes and A. J. Ganesh for helpful discussions
regarding the determination of the optimal value of .

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:20 from IEEE Xplore.  Restrictions apply. 



454 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 10, NO. 4, AUGUST 2002

REFERENCES
[1] M. Abrams, C. R. Standbridge, G. Abdulla, S. Williams, and E. A. Fox,

“Caching proxies: Limitations and potentials,” in Proc. 4th Int. World
Wide Web Conf., Boston, MA, Dec. 1995.

[2] L. Breslau, P. Cao, L. Fan, G. Philips, and S. Shenker, “Web caching
and Zipf-like distributions: Evidence and implications,” in Proc. IEEE
INFOCOM, vol. 1, New York, 1999, pp. 126–134.

[3] M. Busari and C. Williamson, “On the sensitivity of web proxy cache
performance to workload characteristics,” in Proc. IEEE INFOCOM,
vol. 3, Anchorage, AK, Apr. 2001, pp. 1225–1234.

[4] P. Cao and S. Irani, “Cost-aware WWW proxy caching algorithms,” in
Proc. USENIX Symp. Internet Technologies and Systems, Monterey, CA,
Dec. 1997.

[5] C. R. Cunba, A. Bestavros, and M. E. Crovella, “Characteristics of
WWWclient-based traces,” Boston Univ., Boston,MA, BU-CS-96-010.

[6] R. Durrett, Probability: Theory and Examples, 2nd ed. Belmont, CA:
Duxbury, 1996.

[7] S. Jin and A. Bestavros, “GreedyDual* web caching algorithm: Ex-
ploiting the two sources of temporal locality in web request streams,”
in Proc. 5th Int. Web Caching and Content Delivery Workshop, Lisbon,
Portugal, May 2000.

[8] T. Lindvall, Lectures on the Coupling Method. New York: Wiley-In-
terscience, 1992.

[9] R. Motwani and P. Raghavan, Randomized Algorithms. Cambridge,
U.K.: Cambridge Univ. Press, 1995.

[10] J. Norris, Markov Chains. Cambridge, U.K.: Cambridge Univ. Press,
1997.

[11] K. Psounis, B. Prabhakar, and D. Engler, “A randomized cache replace-
ment scheme approximating LRU,” in Proc. 34th Annu. Conf. Informa-
tion Sciences and Systems, Princeton, NJ, Mar. 2000.

[12] K. Psounis and B. Prabhakar, “A randomized web-cache replacement
scheme,” in Proc. IEEE INFOCOM, vol. 3, Anchorage, AK, Apr. 2001,
pp. 1407–1415.

[13] L. Rizzo and L. Vicisano, “Replacement policies for a proxy cache,”
IEEE/ACM Trans. Networking, vol. 8, pp. 158–170, Apr. 2000.

[14] D. Shah, P. Giaccone, and B. Prabhakar, “An efficient randomized algo-
rithm for input-queued switch scheduling,” in Proc. HOT Interconnects
9 Conf., Stanford, CA, Aug. 2001.

[15] D. Shah and B. Prabhakar, “The use of memory in randomized load bal-
ancing,” in Proc. Int. Symp. Information Theory, Lausanne, Switzerland,
July 2002.

[16] A. Silberschatz and P. Galvin, Operating System Concepts, 5th
ed. Reading, MA: Addison-Wesley Longman, 1997.

[17] L. Tassiulas, “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches,” in Proc. IEEE INFOCOM,
vol. 2, San Fransisco, CA, Mar. 1998, pp. 533–539.

[18] S. Williams, M. Abrams, C. R. Standbridge, G. Abdulla, and E. A. Fox,
“Removal policies in network caches for world-wide web documents,”
in Proc. ACM SIGCOMM, Stanford, CA, Aug. 1996.

[19] R. Wooster and M. Abrams, “Proxy caching that estimates edge load
delays,” in Proc. 6th Int. World Wide Web Conf., Santa Clara, CA, Apr.
1997.

[20] Web caching white paper. CacheFlow, Inc. [Online]. Available:
http://www.cacheflow.com/technology/whitepapers/web.cfm

[21] NLANR cache access logs. [Online]. Available: ftp://ircache.nlanr.
net/Traces/

Konstantinos Psounis (S’97) received a degree
from the Department of Electrical and Computer
Engineering, National Technical University of
Athens, Athens, Greece, in 1997 and the M.S. degree
in electrical engineering from Stanford University,
Stanford, CA, in 1998. He is currently working
toward the Ph.D. degree at Stanford University.
His research concerns probabilistic, scalable algo-

rithms for Internet-related problems. He has worked
mainly in web caching and performance, web traffic
modeling, and congestion control.

Mr. Konstantinos is a Stanford Graduate Fellow. He has received the Tech-
nical Chamber of Greece Award for graduating first in his class.

Balaji Prabhakar (M’94) received the Ph.D. degree
from the University of California at Los Angeles in
1994.
He is an Assistant Professor of Electrical Engi-

neering and Computer Science, Stanford University,
Stanford, CA. He has been at Stanford since 1998.
He was a Post-Doctoral Fellow at Hewlett-Packard’s
Basic Research Institute in the Mathematical
Sciences (BRIMS) from 1995 to 1997 and visited
the Electrical Engineering and Computer Science
Department, Massachusetts Institute of Technology,

Cambridge, from 1997 to 1998. He is interested in network algorithms (espe-
cially for switching, routing and quality-of-service), wireless networks, web
caching, network pricing, information theory, and stochastic network theory.
Dr. Balaji is a Terman Fellow at Stanford University and a Fellow of the Al-

fred P. Sloan Foundation. He has received the CAREER Award from the Na-
tional Science Foundation and the Erlang Prize from the INFORMS Applied
Probability Society.

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:20 from IEEE Xplore.  Restrictions apply. 


