
Approximate Fairness Through Differential Dropping
(summary)

Rong Pan Lee Breslau Balaji Prabhakar Scott Shenker
Stanford University AT&T Labs-Research Stanford University ACIRI

0

0.2

0.4

0.6

0.8

1

1e-06 1e-05 0.0001 0.001 0.01 0.1 1

Cu
m

ul
at

ive
 F

ra
ct

io
n 

of
 B

yt
es

Fraction of 1-Second Rates

Trace 1
Trace 2
Trace 3

Fig. 1. Complementary Distribution of 1-Second Rates

Many researchers have argued that the Internet architecture would be
more robust and more accommodating of heterogeneity if routers allo-
cated bandwidth fairly. Most of the mechanisms proposed to accom-
plish this fall into two general categories, each with their own draw-
backs. The first category, which includes Fair Queueing (FQ) and its
many variants, involves complicated packet scheduling algorithms that
may not be inexpensively implementable at extremely high speeds. The
algorithms in the second category, active queue management schemes
with modification to improve fairness (e.g., FRED, SFB), are easy to
implement and are much fairer than the original RED design, but are
not intended to provide max-min fairness among a large population of
flows . Our research focuses on the design of a router mechanism that
achieves approximately fair bandwidth allocations with relatively low
implementation complexity.1

There are three basic goals of our design. First, the resulting band-
width allocations should be approximately max-min fair. We evalu-
ate fairness over relatively long time scales, on the order of several
roundtrip times. Second, the design should be easily implementable at
high speeds. We limit ourselves to FIFO packet scheduling algorithms
with probabilistic drop-on-arrival, and use only a small amount of state
(compared to the packet buffers) to make these dropping decisions. Fi-
nally, the algorithm must have active queue management.

To achieve these goals, we propose an algorithm called Approximate
Fair Dropping (AFD). It uses a FIFO queue with probabilistic drop-on-
arrival like RED. However, these dropping decisions are based not only
on the queue size but also on the flow’s current sending rate . Under
congestion, a flow’s packet is discarded with a probability

, which limits each flow’s throughput to the fair share .
Thus, dropping is not applied uniformly across flows but is applied
differentially based on an estimate of a flow’s current sending rate. The
fair rate is estimated implicitly based on the length of the FIFO
queue, and so requires little state or complexity. Providing reasonably
accurate estimates of the flow rates is the key technical challenge.

The state required to accurately estimate each flow’s rate is quite
large, growing linearly with the number of flows, and thus is infeasible.
However, we only need to keep state for those flows that are sending
at or above the fair share, since those are the only flows whose packets
will be dropped. Recent trace data has suggested that the distribution
of flow rates is long-tailed and that most bytes are sent by relatively fast

A recent paper describes the RED-PD algorithm, which has similar but not identical goals to what we
propose here.

0

100

200

300

400

500

600

RED FRED AFD-SB AFD-FT

Th
rou

gh
pu

t (k
bp

s)

Fig. 2. Mixed Traffic - throughput

0

0.05

0.1

0.15

0.2

RED FRED AFD-SB AFD-FT

Dr
op

 Pr
ob

ab
ilit

y

Fig. 3. Mixed Traffic - drop probability

flows. For example, Figure 1 shows the cumulative distributions of the
1-second flow rates for three traces; in these datasets, 10% of the flows
represent between 60% to 90% of the total bytes. Thus, a sampling
of the recent traffic will be heavily dominated by the faster flows and,
in typical cases, these are the only flows at or above the fair share.
Our design uses a sampling of recently arrived packets to estimate the
flow rates. The state required is roughly proportional to the number
of fast flows, not the total number of flows, and thus is much more
manageable. Back-of-the-envelope calculations indicate that this state
will be much less than that already kept in the packet buffers.

A direct implementation of AFD algorithm, which we refer to as
AFD-SB, requires two data structures: a shadow buffer which stores
the recent history of all packet arrivals (header only) and a flow table
which keeps the packet count of each flow that appeared in the shadow
buffer. A randomized approximation of AFD, which we call AFD-FT,
uses only a flow table and, as a result, it needs much less state than
AFD-SB.

We have evaluated AFD in a variety of scenarios using simulations.
One typical simulation is presented in Figures 2 and 3, in which 7 TCP
flow groups (5 flows each) with different congestion control mecha-
nisms and RTTs compete for a congested link bandwidth of 10Mbps.
Figure 2 shows the average throughput that each flow group gets under
four algorithms: RED, FRED, AFD-SB and AFD-FT. The correspond-
ing drop probability of each flow group is depicted in Figure 3. This
and other data suggests that, in a wide range scenarios, AFD provides
a good approximation to fair bandwidth allocation, typically providing
bandwidth allocations within +/-15% of the fair share.


