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USES LIMITED PARALLELISM TO FIND A MATCHING IN A SINGLE ITERATION, AS

COMPARED TO THE O(N3) ITERATIONS OF THE MORE COMMON MAXIMUM-

WEIGHT MATCHING ALGORITHM. APSARA ALSO ACHIEVES A THROUGHPUT OF

UP TO 100 PERCENT AND HAS VERY GOOD DELAY PROPERTIES.

eeeeee The high demand for Internet
bandwidth has led to increasingly higher-
speed links and caused an associated demand
for routers with a high aggregate switching
capacity. At the highest speeds, input-queued
(IQ) switches have become the architecture
of choice, mainly because the memory band-
width of their packet buffers is very low com-
pared to that of output-queued and
shared-memory architectures.

To perform well, however, an NV x N IQ
switch requires a good packet scheduling algo-
rithm to determine which inputs to connect
with which outputs in each time slot. The max-
imum-weight matching (MWM) algorithm
finds, from among N! possible matchings, the
matching with the highest weight. Here, the
weight of the edge connecting input 7 to out-
put j can either be the number of packets
queued at input 7 for output j or the age of the
oldest packet at input 7for output 7. The MWM
algorithm is known to provide a 100 percent
throughput'” as long as no input or output is
over subscribed. It achieves a low average delay
by keeping queue lengths short. However,
MWM is complex to implement: It needs

O(N?) iterations in the worst case and does not
lend itself to an easy pipelined implementation.
These implementation obstacles have moti-
vated the proposal of several scheduling algo-
rithms for high-speed switches, such as iterative
SLIP (iSLIP), iterative longest-queue first
(iLQF),’ reservation with preemption and
acknowledgment (RPA),® and matrix unit cell
scheduler (MUCS).” However, these algorithms
perform poorly compared to MWM when the
input traffic is nonuniform: They induce large
delays, and their throughput can be less than
100 percent. Thus, although the other algo-
rithms mentioned aim to solve implementation
problems, their performance is poor.

This situation raises the question, is it pos-
sible for an algorithm to compete with
MWM’s performance and yet be simple to
implement? If yes, what feature of the prob-
lem remains to be exploited? The answer lies
in recognizing two features of the high-speed
switch-scheduling problem:

* At most, packets arrive (or depart) at a
rate of one per input (or output) port in
a single given time slot. This means
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queue lengths, which MWM takes to be
the weights, change very little during suc-
cessive time slots. This situation suggests
that a heavily weighted matching will
continue to be heavily weighted for a few
more time slots.

* Two randomly chosen matchings that dif-
fer by very few (for example, two) edges
will quite likely be just as heavy. That s,
given heavy matching A, there is quite
likely matching M that is a “neighbor” of
Mand is also heavy. This provides a basis
for efficiently searching the set of match-
ings over successive time slots by looking
at the neighbors of the current matching.

When made precise, these observations
yield the Apsara algorithm, which uses paral-
lelism in hardware to search for a good match-
ing in each time slot. More importantly,
Apsara needs only one iteration per time slot,
regardless of the switch’s size.

Switch model

We consider an VX Ninput-queued switch,
and partition the buffer at input 7into Nvirtual
output queues (VOQs). VOQ); stores packets
at input 7 for output ;. Following common
practice, we assume fixed packet lengths.
(Although Internet packet lengths vary, it is
common for high-speed routers to fragment
them into fixed-length cells before switching
and to reassemble the cells into packets at the
egress port.) We then can denote the size of
VOQjat time ¢by g;(2). Let Q(#) = [¢,()] be an
N x N matrix capturing the lengths of all
VOQs at time 7

Let 4, be the average rate at which packets
arrive at input 7 for output j, and let A = [4,]
be the average arrival rate matrix, also called
the load matrix. We require the load matrix to
be admissible—that is, Z; 4, < 1 for every 4
and X, 4, <1 for every j. In other words, this
condition ensures that no input or output is
oversubscribed.

We assume the switching fabric to be inter-
nally nonblocking (for example, we assume it
to be a crossbar). Such a fabric places a con-
straint on scheduling algorithms: In each time
slot, each input can connect with at most one
output, and each output can connect with at
most one input. We use binary variables x,(2),
to denote connections. Input 7 is connected

with output jat time #if and only if x,(7) = 1.
Without loss of generality, we consider only
complete connections; that is, we allow a con-
nection between input 7 and output j even if
4;(#) = 0. We can now model the crossbar con-
straint as follows:

%€ (0, i j=1,.u N

N
inj(z) “1i=1..N
j=1
N
Zx,.j(z) =1,j=1..N
i=1

We can consider a feasible connection con-
figuration as a matching in a bipartite graph.
Inputs and outputs correspond to nodes in
the graph, and an edge between input 7 and
output j denotes that they are connected or
matched. Let X(9) = [x;(9)] denote the match-
ing matrix at time #. For an VX Nswitch, the
set of all possible matchings, denoted by S,
has cardinality M.

It is the job of the switch scheduling algo-
rithm to determine, at each time # the particu-
lar matching that it will use. Thus, for example,
the algorithm could decide to connect inputs
and outputs in the following round-robin fash-
ion. At time 0, input 7 connects with output 7
at time 1, input 7 connects with output (7 + 1)
mod NV, and so on. In this case, we can denote
the corresponding matching matrices as x,(2) =
1ifj=(i+ 7 mod NV forevery j, 1 <j< N.

A scheduling algorithm of particular inter-
est is MWM; we define it as follows. Denote
the weight of marching X(#) = [x,(9)] as W(2)
=X, 4,(?) x,(2), taking the weight of the edge
between input 7 and output j to be equal to
queue length ¢,(7).

MWM chooses, at each time # the match-
ing with the highest weight. More precisely,
if X*(#) denotes the matching determined by
MWM at time # then

X"(2) = argr)g%if{z x;q; (D)}
ij

Researchers have shown that for all admis-
sible independent and identically distributed
Bernoulli input traffic patterns, MWM deliv-
ers up to 100 percent throughput."? Dai and



Prabhakar’s work later relaxed the restriction
of independent and identically distributed
Bernoulli inputs.? Furthermore, extensive sim-
ulations show that MWM has low delays.
However, MWM’s main drawback is that it is
difficult to implement in very high-speed
and/or large switches. Our proposed algorithm
alleviates these implementation problems.

Apsara

As mentioned in the introduction, there are
two features of the switch scheduling problem
we wish to take advantage of to come up
with an easy-to-implement high-performance
scheduling algorithm. The following discus-
sion recalls these features and shows, intuitive-
ly, why they will help obtain good matchings.

* Queue lengths ¢,(7) do not change much
between iterations. Indeed, each g,(#) can
increase by one (at most) because of a pos-
sible arrival. They can also decrease by at
most one because of a possible departure.
This situation implies that a matching’s
weight changes by a bounded amount,
making it likely that a heavy matching will
tend to stay heavy over several time slots.

* We will call matchings Xand Y'that dif-
fer in very few edges neighbors, denot-
ing by MX) the set of all neighbors of
matching X. The observation we shall
exploit is that if Xis a heavy matching, it
has a very good chance of having neigh-
bor X € MX) that is also heavy. If MX)’s
cardinality is small, we can conduct this
process as a parallel search in hardware.

We will shortly more precisely define what
we mean by a neighbor. For now, we note that
the two features work in our favor in the fol-
lowing way: Given matching X(#) at time # we
explore V[ X(#)] in parallel to determine if there
is matching X” that is heavier than X(2). If yes,
we use the heaviest such matching at time # +
1. Otherwise, we continue to use matching X(?)
at time £+ 1. The two observations we base this
method on suggest that the weight of the
matching at time £+ 1 is likely to be quite good.

Given matching X = [x], let 71(2) = jif x; =
1. That is, matching X connects input 7 to out-
put 7r(z). This lets us shorten the matching’s
representation. For example, suppose /N = 3;
consider the matching

010
X=|1 0 0
0 0 1

We can represent this matrix as vector {7(1),

n(2), m(3)} = {2, 1, 3}.

Definition 1: Neighbor

We say that matching Y'is a neighbor of
matching Xif and only if there are exactly two
inputs—say 7, and 7,—such that ¥ connects
input 7, to output 7(7,) and also connects
input 4 to output 7(7,). All other input-out-
put pairs are the same under Xand Y. Xand
Y differ in only two edges; the other N —2
edges are the same for both. From a practical
point of view, computation of a matching’s
neighbor is easily implemented in hardware.

Definition 2: Neighborhood set

We use MX) to denote the set of all neigh-
bors of matching X. The cardinality of MX)
is M(N—1)/2.

As an example, consider a 3 X 3 switch.
Matching Xand its three neighbors X, X, and
X; are

X=(1,2,3)
X =(2,1,3)
X, =(1,3,2)
X=0,2,1)

Hamiltonian walk on matchings

Before presenting the algorithm, we need
to explain one last concept, that of a Hamil-
tonian walk on the set of all matchings. We
introduce the walk and use it in describing the
Apsara algorithm only because it lets us prove
that Apsara achieves up to 100 percent
throughput. In the section on simulations, we
do not use this concept, and yet we shall find
that Apsara achieves 100 percent throughput.

Consider a graph with N! nodes—each
corresponding to a distinct matching—and
all possible edges between these nodes. Let
Z(?) denote a Hamiltonian walk on this
graph; that is, it visits each of the V! distinct
nodes, one after the other, exactly once in
time =1, ..., N!. We extend Z(?) for > N!
by defining Z(#) = Z[(# mod N')+1]. Nijen-
huis and Wilf describe one simple algorithm
for such a Hamiltonian walk.®

This algorithm produces Z(#) such that, for
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Figure 1. Schematic of Apsara implementation. Apsara uses
old matching X(1) and new arrivals A(t+1) to compute the
weights of neighbor matchings in parallel. £, computes the

weight of the it

h neighbor of x(#). This scheme determines

new matching X(t+1) as a result of weight comparison.
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all # Z(z+ 1) is a neighbor of Z(#). When we
execute this algorithm for V= 3, it generates
the following matchings: Z(1) = (1, 2, 3), Z(2)
=(1,3,2),23) =3, 1,2), Z(4) =(3,2, 1),
Z5) =(2,3,1), Z06) = (2,1, 3), A7) = Z1),
Z(8) = Z2), and so on.

Basic Apsara algorithm

Let X(#) be the matching determined by
Apsara at time £, and let Q(#+ 1) be the queue
lengths at the beginning of time #+ 1. At time
t+ 1, Apsara does the following:

* Determine neighbors MX(#)] of X(#) and
matching Z(¢+ 1) that correspond to the
Hamiltonian walk at time #+ 1.

e Let S(r+ 1) = NI X(»)] U Z(r+ 1) U X(9).
Compute the weight of every matching V'
€ Sz+1)as W(Y) = £, y;q, (£+ 1).

* Determine the matching at time 7 + 1
given by X(z+1)=arg Ug}s?in{W(U)}

This basic version of Apsara requires com-
puting the weight of neighbor matchings.
Each such computation is easy because neigh-
bor Ydiffers from matching X(#) in exactly
two edges. However, computing the weights
of all MN—1)/2 neighbors, if done in paral-
lel as shown in Figure 1, will require a lot of
space in hardware for large values of V.

Burt high-aggregate-bandwidth switches
come in two flavors: a few ports connected to
very high-speed lines or several ports con-
nected to lower-speed lines. So, if the goal is

to build a high-aggregate-bandwidth switch
with a few ports (say, 30 to 40), you require
less than 800 modules for computing the
weights of neighbor matchings. The big win
in this case is in time (Apsara requires only
one iteration), and for switches connected to
high-speed lines, the time available for sched-
uling packets is very small. Thus, Apsara helps
in this case by trading off space for time.

If, on the other hand, you want to build a
switch with say, 1,000 ports, you need up to
500,000 modules, which can be prohibitive-
ly expensive. We approach this issue from a
different direction. Say that hardware space
constraints allow the use of at most K<</N?
modules. How can we efficiently conduct the
search procedure that Apsara requires?

One obvious solution is to search the neigh-
borhood set over multiple iterations by reusing
the Kmodules. After all, low line speeds permit
more time for scheduling packets, letting you
conduct more iterations. However, if line speeds
are high and you are only allowed one iteration,
then the question arises as to which K neigh-
bors to choose. A deterministic procedure for
choosing the K neighbors will usually result in
poor choices since it is not clear beforehand
which neighbors are heavy. It is better to choose
Kneighbors at random and use the heaviest of
these. This motivates another Apsara variant.

Apsara randomized variant

Suppose hardware constraints allow the use
of only Kmodules. Given matching X(#) used
at time rand queue lengths Q(#+ 1), we deter-
mine matching X(z + 1) as follows:

e Pick Kelements uniformly and at ran-
dom from set N[X(#)]. Let N J[X(7)]
denote the set of these elements. Note
that it is not necessary to generate
N[X(9)]. Determine matching Z(z + 1)
that corresponds to the Hamiltonian
walk at time 7+ 1.

o Let S(t+1) = Ne[XD] U Z(z+ 1) L
X(#). For every matching Ye Si(z+ 1),
compute W(Y) =X, 3,4, (£+ 1).

e Then X(r+1)=arg Ugsl,ixm){W(U)}

We conclude our description of Apsara by
mentioning one last point. Apsara generates all
the matchings in the neighborhood set regard-
less of the current queue lengths. Apsara only



uses queue lengths to select the heaviest match-
ing from the neighborhood set. For this reason,
itis possible that the Apsara-determined match-
ing could be heavy, but not of maximal size.
That is, there exists an input, say 7 which has
packets for output 7, but matching X(#) connects
input 7 to some other output ;” and connects
output jto some other input i’. Both ¢ (1) and
g{#) are also equal to 0. Thus, input 7and out-
put jwill both idle unnecessarily.

If needed, it is easy to convert Apsara-deter-
mined matching X(#) into a maximal match-
ing. We call this maximal version Max-Apsara.

Apsara throughput theorem
We state the following theorem but do not
provide a proof because of space limitations.
Theorem: Apsara is stable (it achieves up
to 100 percent throughput) for any admissi-
ble independent and identically distributed
Bernoulli packet arrival process.

Performance

We compare Apsara’s performance with
that of other algorithms: iSLIP and iLQF
(both run with up to N iterations) and
MWM. Recall that we do not use matching
Z(#) from the Hamiltonian walk. Although
this version of Apsara should perform worse
(because it has one less matching at its dis-
posal), we shall show that even this version
performs quite well, giving up to 100 percent
throughput and acceptable delays.

Simulation settings
We first must define a particular switch,
input traffic, and performance measures.

Switch. We use a switch with V= 32. Each
VOQ can store up to 10,000 packets, and the
switch drops excess packets.

Input traffic. We equally loaded all inputs on
anormalized scale, and p € (0, 1) denotes the
normalized load. The arrival process is an
independent and identically distributed
Bernoulli process. Let |4 = (£ mod N). We
used the following load matrices to test
Apsara’s performance:

s Uniform. In a uniform matrix, A; = p/ N
V 4. This is the most commonly used test
traffic in the literature.

* Diagonal. A diagonal loading has 4, =
2p/3, Agi = pI3 Y 4, and A; = 0 for all
other 7and ;. This loading is skewed in
the sense that input 7 only has packet out-
puts Zand |7 + 11. It is more difficult to
schedule than uniform loading.

* Log diagonal. For alog-diagonal loading,
Aj =22, and Z; A, = p. For example,
the distribution of load at input 1 across
outputs is A,;= 2V7p/ (2"~ 1). This type
of load is more balanced than diagonal
loading, but clearly more skewed than
uniform loading. Hence, a specific algo-
rithm’s performance will become worse
as the loading changes from uniform to
log diagonal to diagonal.

Performance measures. We compared the per-
formance of different algorithms by measur-
ing the mean IQ lengths and computed delays
directly using Little’s formula.

The simulations ran until the estimate of
the average delay reached the relative width
of confidence interval equal to 1 percent with
probability > 0.95. We estimated confidence
interval width by using the batch means
approach, one standard technique to evaluate
simulation results.

Simulation results for basic version

Figures 2 (next page) show the mean input
queue lengths for uniform, diagonal, and log-
diagonal loadings. Among all the algorithms
considered, Apsara is the only nonmaximal
algorithm, in the sense that for low load some
additional connections could be added in the
schedule. This explains why Apsara shows
delays greater than the other algorithms for low
load. Max-Apsara can bridge the gap in the
delays, and the effect of maximizing the match-
ing decreases with the increasing load, imply-
ing that Apsara becomes maximal at high loads.
The main observation from these simulation
results is that both Apsara and Max-Apsara can
reach 100 percent throughput under all possi-
ble traffic loadings.

Table 1 (next page) summarizes the maxi-
mum achievable throughput for all the traffic
considered.

Simulation results: Randomized variant
We next study the performance of Aspara’s
randomized variant to understand the per-

JANUARY—FEBRUARY 2002 23



PARALLEL SCHEDULER

.. ...

—— MWN
--%- Apsara
-—%-- Max-Apsara

1,000/ -

7
S 100 » S
a :
S
S 10
E
=
2 1
o
g
= 0.1
] 3
9]
0.01 : : : : : : : : ‘
01 02 03 04 05 06 07 08 09 1.0
(a) Normalized load
10,000 f:-vvrrvevesvveessmvesmssssmns s
—— MWN
1,000 -=%- Apsara  |ieei T
%) == Max-Apsara @l
2o ~@- iSLIP I
g 100+ —m--ijLQF S i;
a :
5 ]
S 10
E
=
= 1
ko)
g
P 0.1
]
)
=
0.01
L
0.001 : : : : : : : : ;
01 02 03 04 05 06 07 08 09 1.0
(b) Normalized load
1’000 ...................................................................

100}~ —— MWN
--%- Apsara
-—%-- Max-Apsara

%)
©
=7
Qo
©
Qo
S
o 104~
E
=
2 1
o
g
c 0.1
©
(5]
=
0.01
L
0.001 : : : : : : : : :
01 02 03 04 05 06 07 08 09 1.0
(c) Normalized load
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Table 1. Maximum achievable
throughput for different schedulers.
Apsara can reach the same
throughput as MWM under all traffic
scenarios considered.

Throughput for given loading (%)

Log
Algorithm Uniform diagonal Diagonal
MWM > 99 > 99 > 99
Apsara > 99 > 99 > 99
iLQF > 99 =97 =87
iSLIP > 99 =83 =82

formance degradation because of the reduced
number of neighbors explored. We only con-
sider diagonal and log-diagonal loadings; the
randomized version performs well under uni-
form loading. We use Apsara-K'to denote the
curves corresponding to the exploration of K
neighbors. Thus, for V= 32, we denote the
basic version Apsara-496 [K'= 32(32 — 1)/2
=496]. We also consider two randomized ver-
sions, K= N =32 and K= log,N =5, denot-
ing these versions Apsara-32 and Apsara-5.
Figures 3 and 4 show the mean IQ length for
log-diagonal and diagonal loadings. As K
decreases, the average delay, of course,
increases. The increase is slight under log-
diagonal loading and quite a bit under diag-
onal loading. Somewhat surprisingly, the
Aspara’s throughput performance with K=
log, NVis quite good, up to 100 percent.

‘ x Je can consider the proposed scheduling

algorithm as a general framework to
design practical, high-performance schedulers
for input-queued switches. This framework is
general enough to be used for designing hard-
ware circuits for efficiently solving linear opti-
mization problems approximately. iAo
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