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To provide high-quality service
under heavy user loads, the Internet depends
on congestion avoidance mechanisms imple-
mented in the transport-layer such as the
transmission-control protocol (TCP). How-
ever, many TCP implementations don’t
include—either deliberately or by accident—
a congestion avoidance mechanism. More-
over, a growing number of user datagram
protocol (UDP)-based applications running
on the Internet don’t back off properly when
they receive congestion indications. As a
result, these applications aggressively use more
bandwidth than other TCP-compatible flows.
Therefore, it’s necessary to have router mech-
anisms to shield responsive flows from unre-
sponsive or aggressive flows and to provide
good quality of service.1

All of the router algorithms (scheduling and
queue management) discussed in the “Router
algorithms” box have either provided fairness
or were simple to implement, but not both
simultaneously. In this article, we explore the
CHOKe 2 (choose and keep for responsive
flows, choose and kill for unresponsive flows)
algorithm, which combines fairness and sim-
plicity, and we address approximating byte-
by-byte fairness and implementation issues of
the algorithm. 

Background
CHOKe uses the observation that the

FIFO-buffer contents form sufficient statis-
tics about incoming traffic to penalize misbe-
having flows in a simple fashion. The state,
taken to be the number of active flows and the
flow identification of each of the packets, is
assumed to be unknown to the algorithm.
The only observable data for the algorithm is
the total occupancy of the buffer. 

Specifically, CHOKe calculates the average
occupancy of the FIFO buffer using an expo-
nential moving average window exactly as in
the random early detection (RED) algorithm.3

It marks two thresholds on the buffer, a mini-
mum threshold, minth and a maximum thresh-
old, maxth. When the average queue size is less
than minth, every arriving packet is queued into
the FIFO buffer. When the average queue size
is larger than minth, each arriving packet is com-
pared with a randomly selected packet, called
a drop candidate packet, from the FIFO buffer.
Packets with the same flow identification are
both dropped; otherwise, the randomly cho-
sen packet remains in the buffer, and the arriv-
ing packet is dropped with a probability
dependent on queue size. The drop probabili-
ty is computed exactly as in RED. In particu-
lar, when the average queue size is greater than
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maxth, every arriving packet is dropped. This
moves the queue occupancy back to below
maxth. Figure 1 (next page) shows a flow chart
of the algorithm.

An intuitive reason for why this scheme
penalizes unresponsive flows is that the FIFO
buffer is more likely to have packets belong-
ing to a misbehaving flow, and hence, the
algorithm is more likely to choose these pack-
ets for comparison. Further, packets belong-

ing to a misbehaving flow arrive more numer-
ously and are more likely to trigger compar-
isons. The intersection of these two
high-probability events is precisely the event
that causes dropping of packets belonging to
misbehaving flows. Therefore, packets from
misbehaving flows are dropped more often
than packets from well-behaved flows.

In general, the algorithm can choose m > 1
packets from the buffer, compare all of them
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The two types of router algorithms for congestion control are sched-
uling and queue management.1 The well-known fair queuing (FQ) algo-
rithm exemplifies the scheduling algorithm class. FQ requires partitioning
the buffer at each router output into separate queues, each of which
buffers each flows’ packets.2 Because of per-flow queuing, packets
belonging to different flows are essentially isolated from each other, and
one flow cannot degrade the quality of another. However, it’s well known
by researchers that this approach requires complicated per-flow state
information, making it too expensive to be widely deployed. 

To reduce the cost of maintaining flow state information, the recently
proposed scheduling algorithm called core stateless FQ3 divides routers
into two categories: edge and core. An edge router keeps per-flow state
information and estimates each flow’s arrival rate. These estimates are
inserted into the packet headers and passed on to the core routers. A core
router simply maintains a stateless FIFO queue and, during periods of con-
gestion, drops a packet randomly based on the rate estimates. Even though
this scheme reduces the core router’s design complexity, the edge router’s
design is still complicated. Also, core routers have to extract packet infor-
mation differently from traditional routers, which further increases the
complexity of the scheme.

Another notable scheme, which aims to approximate FQ at a smaller
implementation cost, is stochastic fair queuing.4 SFQ classifies packets
into a smaller number of queues than FQ using a hash function. Although
this reduces FQ’s design complexity, SFQ still requires approximately 1,000
to 2,000 queues in a typical router to approach FQ’s performance.5

Scheduling algorithms can allocate fairly, but they are often too com-
plex for high-speed implementations and don’t scale well to a large num-
ber of users. Conversely, queue management algorithms are usually
simple. Given their simplicity, the hope is to approximate fairness. Ran-
dom early detection (RED)6 exemplifies this class of algorithms. A router
implementing RED maintains a single FIFO shared by all the flows and
drops an arriving packet at random during periods of congestion. The drop
probability increases with the congestion level. By keeping the average
queue size small, RED reduces the delays experienced by most flows.
However, RED can’t penalize unresponsive flows. 

To improve RED’s ability for penalizing unresponsive users, a few vari-
ants—such as RED with penalty box7 and flow random early drop8—have
been proposed. However, these variants incur extra implementation over-
head since they collect certain types of state information. Another inter-

esting variant is stabilized RED (SRED).9 SRED evens out the occupancy of
the FIFO buffer independently of the number of active flows. More inter-
estingly, it estimates the number of active connections and finds candi-
dates for misbehaving flows. It achieves this by maintaining a data
structure, called the Zombie list, which serves as a proxy for information
about recent flows. Although SRED identifies misbehaving flows, it doesn’t
propose a simple router mechanism for penalizing misbehaving flows.
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with the incoming packet, and drop the pack-
ets that have the same flow identification as
the incoming packet. Not surprisingly, choos-
ing more than one drop candidate packet
improves CHOKe’s performance. This is espe-
cially true when there are multiple unrespon-
sive flows. Indeed, as the number of
unresponsive flows increases, it’s necessary to
choose more candidate packets for dropping.
One way to automate the process so that the
algorithm chooses the proper value of m ± 1 is
to introduce an intermediate threshold, intth,
which partitions the interval between minth

and maxth into two regions. When the average
buffer occupancy is between minth and intth,
the algorithm can set m = 1, and when the

average buffer occupancy is
between intth and maxth, it sets
m = 2. More generally, we can
introduce multiple thresholds
that partition the interval
between minth and maxth into
k regions R1, R2, …, Rk and
choose different values of m,
depending on the region in
which the average buffer
occupancy falls. Obviously,
we need to let m increase
monotonically with the aver-
age queue size.

Constant- and variable-
length packets

Simulation results of
CHOKe’s performance in
penalizing misbehaving flows

enable approximating fair bandwidth alloca-
tion, under both constant- and variable-length
packets.

Constant-length packets
Figure 2 illustrates the network configuration

of CHOKe’s performance when there is a sin-
gle congested link. We simulate a particular sce-
nario where the 1-Mbps link between routers
R1 and R2 is shared by 1-UDP and 32-TCP
sources. The UDP source sends packets at a rate
of 2,000 Kbps. Using the Network Simulator
Version 2.0,4 we plot in Figure 3 the through-
put of the UDP flow under different router
algorithms: DropTail (packets are accepted at
the queue if the queue is not full, and dropped
otherwise), RED, and CHOKe. It’s evident that
while both DropTail and RED are unable to
prevent the UDP source from consuming up
to 95% of the link capacity, CHOKe limits the
UDP source’s throughput to about 25% of the
link capacity. This prevents the TCP sources
from being shut out by the UDP source.

When there are many UDP flows in the
network, CHOKe approximates fairness by
drawing more than one sample from the
queue. We set up a simulation configuration
with 32-TCP and 5-UDP sources using the
basic network topology shown in Figure 2. All
UDP sources are assumed to have the same
arrival rate, which varies simultaneously from
100 Kbps to 10,000 Kbps. Figure 4 gives the
simulation results for the CHOKe algorithm.
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In this simulation we used the automated
process previously described to decide on the
number of samples to draw. In particular, we
divided the region between minth and maxth

into three subregions and the number of sam-
ples drawn in a region is set to 2 × i – 1 (i = 1,
2, 3). By drawing up to five samples, CHOKe
manages to protect responsive flows.

Variable-length packets
One problem with the basic CHOKe algo-

rithm is that it treats all packets the same
regardless of their size. As a result, flows with
larger packet sizes get more bandwidth than
flows with smaller packet sizes. More precise-
ly, let F1 and F2 denote two flows with equal
arrival rates (measured in bytes/sec) but dif-
ferent packet sizes, equal to S1 and S2 = 2 × S1

respectively. Since the two flows have the same
arrival rate, the former will
send, on average, twice the
number of packets than the
latter. Thus, F1 packets will
trigger more comparisons and
occupy a larger proportion of
the FIFO buffer, resulting in
more drops compared to the
packets of F2. Let T1 and T2 be
the throughputs of F1 and F2

respectively in bytes/sec. It’s
easy to see that T1 < T2.

Figure 5 (next page)
depicts this phenomenon.
The simulation setup for this
figure is based on the network
topology of Figure 2. In this
case the bottleneck link with
bandwidth 1,000 Kbps is
shared by 2-UDP and 15-
TCP sources. Both UDP flows have a rate of
1,000 Kbps, but their packet sizes are 800 and
400 bytes respectively. TCP packet sizes equal
400 bytes. It’s evident from the figure that basic
CHOKe fails to provide fairness between the
two UDP flows. The throughput of the UDP
flow with the large packets equals 424 Kbps
while the throughput of the other UDP flow
equals only 230 Kbps. The rest of the band-
width is almost equally divided among the
TCP flows.

Chopping the packets
Cleary, random sampling on a per-packet

basis doesn’t lead to fairness at the byte level,
and hence basic CHOKe cannot ensure fair-
ness among flows with variable-length pack-
ets. Thus, there is a need to penalize flows
according to the number of bytes, rather than
packets, sent by them. To accomplish this, the
algorithm would ideally need to sample a ran-
dom byte from the buffer and determine the
packet, and hence the flow to which this byte
belongs. If, as a result of the comparison, it’s
determined that the byte should be dropped,
a dilemma occurs: Although it’s bytewise fair,
it’s impracticable since individual bytes can-
not be dropped from within a packet. Some-
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what surprisingly, we find that it suffices to
drop the whole packet. That is, it’s enough for
the sampling process to take place at the byte
level, while the dropping process can drop
entire packets. 

Since byte-level sampling is not practical,
we seek a mechanism to approximate it. One
mechanism for this is to use a data structure
for drawing samples. The number of data
structure entries corresponding to each pack-
et are proportional to its size. If Smin is the size
of the smallest packet in the queue, a packet
of size S will have S mod Smin entries in the
data structure. Uniformly sampling the data
structure entries is a good approximation of
byte-level sampling.

In a system, packets are stored in memory
at arbitrary places, and a linked list is main-
tained to indicate the order of the packets in
the FIFO queue. Thus, sampling can take
place in this list. To make the sampling process
byte-level fair, it suffices to fragment the pack-
ets, since this will insert in the list the proper
number of entries corresponding to each pack-
et. We refer to this fragmentation as chopping. 

Actually, some implementations do seg-
ment packets into fixed-size cells anyway. In
particular, this is common practice among
high-performance switch designs because it
makes memory management easier and more
efficient. In these cases we get the chopping
for free as a part of the process.

Analysis
Byte-by-byte fairness in the CHOKe

scheme using packet chopping can be
explained by comparing the number of drops
faced by two flows whose arrival rates are
equal, while their packet sizes differ.

In particular, assume flows F1 and F2 have
packet sizes S1 and S2 respectively, and identi-
cal arrival rates (measured in bytes/sec). Let S1

= K × S2. To simplify analysis, assume that all
the packets of a particular flow are the same
size. (For flows with variable-packet sizes, the
analysis can be extended by averaging over a
large number of packets.) According to the
chopping scheme, packets of flow F1 will be
chopped into K parts. We aim to compare the
expected number of bytes dropped from flows
F1 and F2, denoted by N1 and N2 respectively,
over a period of time during which S1 new bytes
arrive at the front of the queue from each flow.

Since the packets of size S1 will be chopped
into K parts of size S1/K, upon arrival, the prob-
ability of match pm for both flows will be the
same. It’s easy to see why this is true when there
are no packet drops. For this probability to
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remain approximately the same when packet
drops take place, the packet drops faced by both
flows should be approximately the same. 

For flow F1, every time there is a match, the
newly arrived packets of size S1 and all the
items of size S1/K that correspond to the
matched chopped packet will be dropped.
Thus

N1 = (S1 + K × S1/K) × pm = 2S1 × pm.

For flow F2, we examine the aggregate effect
of K arrivals to compare with the previous
case. If we consider that the number of pack-
ets of the flow in the queue is much larger than
K—this is reasonable since the flow is sup-
posed to be misbehaving and causing conges-
tion—then the number of packets out of K
that cause packet drops follow binomial dis-
tribution with parameters K and pm. Every
time there is a match, the newly arrived pack-
et of size S2 = S1/K and the matched packet of
the same size will be dropped. Thus

N2 = Kpm × (2 × S1/K) = N1.

Simulation results
To evaluate the performance of the chop-

ping scheme, we ran various simulations in a
single congested link. We compared the
throughput used by flows with the same
arrival rate but different packet sizes. 

Figure 6 plots the throughput obtained by
2-UDP and 16-TCP flows, when the simula-
tion scenario is the same as in Figure 5. The
two UDP flows use up the same amount of
bandwidth, despite their packet size differ-
ence, while the TCP flows are not affected by
the chopping mechanism.

In Figures 7 and 8 we vary the rate of both
UDP flows simultaneously from 100 Kbps
to 10,000 Kbps. The rest of the simulation
parameters are the same as in Figure 5. In Fig-
ure 7 only one sample (drop candidate) is
drawn from the queue. Since one sample is
not enough to sufficiently penalize the unre-
sponsive UDP flows, Figure 8 shows the
bandwidth allocation when two samples are
drawn. Note that the UDP with a large pack-
et size gets a lot of bandwidth under basic
CHOKe while chopping packets equalizes
the performance of the two UDPs without
taking precious bandwidth from the TCP

flows. The conclusion is that chopping pack-
ets seems to work both for any UDP rate and
under sufficient and insufficient numbers of
drop candidates.

A UDP flow that chooses a large packet size,
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can have an advantage over both other UDP
flows and of TCP flows. Figure 9 compares
the throughput obtained by 1-UDP and 32-
TCP flows with packet sizes of 800 and 400
bytes respectively. It’s evident that chopping
reduces the throughput obtained by the UDP
flow, and thus protects TCP flows from UDP
flows that try to use up more bandwidth by
choosing large packet sizes. 

Packet chopping can be applied to any
flow, including TCPs. However, the TCP rate
is dictated by their back-off mechanism and
the degree of congestion. Thus, the analysis
of the chopping mechanism does not hold
for TCP flows. Given that UDP flows con-
sume most of the available bandwidth and
TCP flows in general back off properly, it’s
not critical to investigate the problem of dif-
ferent packet sizes among TCP flows. We
mainly used TCP flows in the previous sim-
ulations to introduce randomness and make
the scenarios more realistic, and not to study
their throughput, which we’ve done exten-
sively elsewhere.2

Implementation issues
Roughly speaking, packet switches are

stored in main memory (SDRAM) at arbi-
trary places. A linked list is maintained in a

different, faster physical memory (SRAM) to
indicate the packet order in the FIFO queue.
The list items contain pointers to the memo-
ry pages where the actual packets are stored.

One way to implement basic CHOKe is to
randomly sample an address from the mem-
ory where the linked list is stored. In case of a
match, a single bit flag of the current item of
the linked list can be set to one, to indicate
that the corresponding packet should be
dropped. Marking the item is preferred over
removing it because removal is an expensive
operation since it requires breaking the list.
To save memory space, the system can imme-
diately move (at the time of marking) the
respective memory address where the actual
packet is stored into the free list. (The free list
keeps track of all available memory spaces for
new-packet storage.) At the head of the queue,
packets corresponding to linked list items
whose flag bits are zero are sent to the outgo-
ing line, while packets whose flag bits equal
one are ignored, see Figure 10a.

When CHOKe draws multiple drop can-
didates from the queue, the algorithm needs
to perform this operation more than once.
This makes the whole process slower. How-
ever, there are cases where due to the linked
list’s large size that it is stored in more than
one physical SRAM. In these cases, the algo-
rithm may sample from each distinct memo-
ry in parallel to accelerate the procedure, see
Figure 10b. 

Cases where the same memory has multi-
ple FIFOs may require drawing samples until
a sample is drawn from the correct FIFO.
This assumes it’s possible to tell which FIFO
a sample belongs to, which can be accom-
plished by using a couple of bits to distin-
guish between FIFOs.

Packet chopping, which the enhanced ver-
sion of CHOKe supports, adds complexity.
Packet chopping may require marking more
than one consecutive item on the linked list.
This is necessary when a large packet that cor-
responds to more than one item in the list
should be dropped. In such a case, the flag of
each of these items should be set to one.
Therefore, it may be necessary to traverse the
list both forward and backward, since the ran-
dom sample can be any of the items that cor-
respond to the large packet. However, if
possible memory waste can be tolerated by the
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system, there is no need to
mark the rest of the cells and
free the respective memory
occupied by all the cells of the
chosen packet. At the defrag-
mentation phase, any packet
with one or more of its cells
marked can just be ignored.

Front CHOKe
A different approach to

avoid these implementation
challenges is to simply not use
random sampling. In partic-
ular, all systems keep track of
the head and the tail of a
FIFO queue. Therefore, it’s
very easy to always choose, for
comparison, the identifica-
tion of the packet at the
queue’s head or tail. We call these variations
of the basic algorithm Front CHOKe and
Back CHOKe. 

Front CHOKe aids bursty traffic. Indeed,
if a flow sends bursts of lengths less than the
queue size, and separates them by silent peri-
ods longer than the time it takes to service all
packets of a burst, then the flow is not subject
to drops. On the other hand, Back CHOKe
penalizes bursty traffic. Bursts will result in
drops, while packets that are spread out in a
uniform manner over time will prevent drops.
Since TCP traffic is bursty while UDP is not,
Front CHOKe is more appropriate. Front
CHOKe avoids random sampling without
compromising performance in terms of TCP
throughput.

To examine Front CHOKe’s performance,
we set up a simulation configuration with 32-
TCP and 1-UDP sources, using the basic

network topology shown in Figure 2. We var-
ied the UDP source rate from 100 Kbps to
10,000 Kbps. Figure 11 compares bandwidth
allocation of the UDP source under basic
CHOKe and Front CHOKe. When the
UDP rate is low, the two schemes perform
nearly the same. As the UDP rate increases
from 500 Kbps to 2,000 Kbps, Front
CHOKe assigns a larger proportion of the
bandwidth to TCP flows since it aids bursty
traffic. For larger UDP rates—more than
2,000 Kbps—Front CHOKe controls the
UDP bandwidth, but performs worse than
basic CHOKe. However, since these rates are
twice the bottleneck bandwidth and there-
fore unrealistic, Front CHOKe could be used
successfully. Multiple drops could be incor-
porated to Front CHOKe by choosing as
drop candidates the m packets that are clos-
er to the head of the queue. A generalization
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Figure 10. Implementation for single packet dropping (a) and multiple packet dropping (b).
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of that idea is to spread out the m drop can-
didate positions along the queue. This has the
advantage of penalizing large bursts, but it
requires that the hardware maintain more
pointers.

We are currently studying the implemen-
tation of the algorithm and some vari-

ants in a commercial high-speed router. MICRO
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