An Implementable Parallel Scheduler for
Input-Queued Switches

Paolo Giaccone, Devavrat Shah, Balaji Prabhakar
giaccone@polito.it, devavrat@cs.stanford.edu, balaji@isl.stanford.edu
Dept. of EE, Politecnico di Torino; Dept. of CS, Stanford University; Depts. of EE and CS, Stanford University

Abstract—The input-queued (IQ) switch architecture has
received much attention in the research community and with
implementors because it scales well with the line speed and
the switch size. The main reason for this is that the memory
bandwidth requirement for an input-queued switch is mini-
mal, making it less expensive to implement compared to an
output-queued or a shared-memory switch. To get a good
delay and throughput performance from an IQ switch re-
quires the use of efficient packet scheduling algorithms for
matching input and output ports. For example, the maxi-
mum weight matching (MWM) algorithm is known to de-
liver a throughput of upto 100% and to provide low delays.
But MWM is complex to implement at high line rates and
scales poorly with the switch size. Many algorithms which
approximate the performance of MWM have been pro-
posed; but, they are still too complex to implement and/or
do not provide a good performance compared to MWM.

This paper proposes an innovative algorithm, called AP-
SARA, which aims to bridge the gap between good perfor-
mance and ease of implementation. The main idea is to use
limited parallelism to find a matching in a single iteration,
as compared to the O(N?3) iterations needed by MWM in
the worst case for an V x N switch. We prove that APSARA
achieves a throughput of upto 100% and extensive simula-
tions show that its delay performance is nearly as good as
that of MWM.

[. INTRODUCTION AND MOTIVATION

The high demand for bandwidth on the Internet has seen
the introduction of higher and higher speed links, and has
caused an attendant demand for routers with a high aggre-
gate switching capacity. At the very highest speeds input-
queued switches have become the architecture of choice
mainly because the memory bandwidth of their packet
buffers is very low compared to that of the output-queved
and shared-memory architectures.

In order to perform well, however, an N x N input-
queued switch requires a good packet scheduling algo-
rithm for determining which inputs to connect with which
outputs in each time slot. The maximum weight match-
ing (MWM) algorithm finds, from amongst the N'! possi-
ble matchings, that matching whose weight is the highest.

0-7695-1357-3/01 $10.00 © 2001 IEEE

9

Here, the weight of the edge connecting input ¢ to output
J can either be the number of packets queued at input ¢
for output § or the age of oldest packet at input ¢ for out-
put 5. The MWM is known to provide a throughput of
100% [11, [2], {3] so long as no input or output is over
subscribed, and achieves a low average delay by keeping
queue-lengths small. However, it is complex to implement
— it needs O(N3) iterations in the worst-case and does not
lend to an easy pipelined implementation.

Implementation considerations have therefore scen the
proposal of a number of scheduling algorithms for high-
speed switches; for example, iSLIP [4], iLQF [5], RPA [6]
and MUCS [7]. However, these algorithms perform poorly
compared to MWM when the input traffic is non-uniform:
they induce very large delays and their throughput can be
less than 100%. Thus, although the above-mentioned al-
gorithms are aimed at the implementation issue, their per-
formance is poor.

This raises the question: Is it possible for an algorithm
to compete with the performance of MWM and yet be sim-
ple to implement? If yes, what feature of the problem re-
mains to be exploited?

The answer lies in recognizing two features of the high-
speed switch scheduling problem: (1) Packets arrive (de-
part) at most one per input (output) per time slot. This
means queue-lengths, which are taken to be the weights
by MWM, change very little during successive time slots.
This suggests that a heavy matching will continue to be
heavy for a few more time slots. (2) Two (randomly cho-
sen) matchings that differ by very few (e.g. two) edges
will quite likely be just as heavy. That is, given a heavy
matching M, there is quite likely a matching M’ that is a
“neighbor” of M that is also heavy. This provides a basis
for efficiently searching the set of matchings over succes-
sive time slots by looking at the neighbors of the current
matching.

The above observations when made precise yield the al-
gorithm APSARA which uses parallelism in hardware to
search for a good matching in each time slot. More impor-

tantly, it needs only one iteration per time slot, regardless
of the size of the switch.

The rest of the paper describes the algorithm APSARA,
states some interesting theoretical properties, and dis-
cusses its implementation.

II. A MODEL OF THE SWITCH

We consider an N x N input-queued switch. The buffer
at input ¢ is partitioned into N “virtual output queues”
(VOQs), where VOQ;; stores packets at input ¢ for output
7. Following common practice we assume that packets are
of fixed length! and denote the size of VOQ;; at time ¢ by
gij(t). Let Q(¢) = [qi;()] be an N x N matrix capturing
the lengths of all VOQs at time ¢.

Let A;; be the average rate at which packets arrive at
input 7 for output §, and let A = [};;] be the average arrival
rate matrix, also called the “load matrix”. We require the
load matrix to be admissible: > j Aij < 1 for every ¢, and
>; Aij < 1 for every j. In words, this condition ensures
that no input or output is over subscribed.

The switching fabric is assumed to be internally non-
blocking (e.g. a crossbar). Such a fabric places a con-
straint on scheduling algorithms: In each time slot, each
input can connect with at most one output and each out-
put can connect with at most one input. We use the binary
variables z;;(t), ¢, = 1,...,N to denote connections.
Input 7 is connected with output j at time ¢ if, and only
if, z;;(t) = 1. Without loss of generality, we consider
only complete connections; that is, we allow a connection
between input ¢ and an output § even if g;;(¢t) = 0. The
crossbar constraint can now be modeled in the following
way:

Z'ij(t) € {0,1}, Vi,j=1,...,N

N
Y ety =1, Vi=1,...,N
j=1
N
> mit)=1, Vji=1,...,N
i=1

A feasible connection configuration can be seen as a
matching in a bipartite graph, where inputs and outputs
correspond to nodes in the graph and an edge between
input ¢ and output 5 denotes that they are connected or
matched. Let X(t) = [z;;(t)] denote the matching ma-
trix at time ¢. Note that for an N x N switch the set of

! Although Internet packets are variable-length it is common for high-

speed routers to fragment them into fixed length cells before switching
and to reassemble the cells at the egress port into packets.

10

all possible matchings, denoted by Sy, has a cardinality
of N

It is the job of the switch scheduling algorithm to de-
termine, at each time ¢, the particular matching that will
be used. Thus, for example, the algorithm could decide to
connect inputs and outputs in the following round-robin
fashion. At time O, input : connects with output z; at
time 1, input ¢ connects with output (i + 1) mod N etc.
We can denote the corresponding matching matrices as:
z;j(t) = 1ifj = (i+t) mod N, foreveryj, 1 <j < N.

A scheduling algorithm of particular interest to us is the
maximum weight matching (MWM) algorithm, which we
now proceed to define. Denote the “weight” of a matching
X(t) = [zi;(t)] as W(t) = 32, ; qij(t)zi; (¢), taking the
weight of the edge between input ¢ and output 7 to be equal
to the queue-length g;;(¢). The maximum weight matching
algorithm chooses, at each time ¢, that matching whose
weight is the highest. More precisely, if X*(t) denotes
the matching determined by MWM at time ¢, then X% (¢)
is given by

X¥(t) = arg)r(xéasslcv{ izjxij‘h'j(t)}- Sy

It has been shown that for all admissible Bernoulli i.i.d.
input traffic patterns MWM delivers upto 100% through-
put [1], [2]. The restriction of Bernoulli i.i.d. inputs was
later relaxed in [3]. Further, extensive simulations show
that it provides low delays. However, the main drawback
of MWM is that it is difficult to implement in very high-
speed and/or in large-sized switches. This motivates the
algorithm we propose in the next section.

ITI. APSARA

Motivating discussion: As mentioned in the introduction,
there are two features of the switch scheduling problem
we wish to take advantage of to come up with an easy-to-
implement high-performance scheduling algorithm. The
following discussion recalls these features and shows, in-
tuitively, why they will help obtain good matchings.

1. The queue-lengths g;;(-) do not change by much be-
tween iterations. Indeed, each g;;(-) can increase at most
by one due to a possible arrival and decrease at most by one
due to a possible departure. This implies that the weight of
a matching changes by a bounded amount, making it likely
that a heavy matching will tend to stay heavy over several
time slots.

2. Two matchings X and Y that differ in very few edges
will be called “neighbors”. Denote by N'(X) the set of all

neighbors of the matching X. The observation we shall
exploit is that if X is a heavy matching, there is a very
good chance that it has a neighbor X’ € N(X) which is
also heavy. If the cardinality of N'(X) is small then this
search can be conducted in parallel in hardware.

We will shortly define what we mean by a neighbor and
make the above notions precise. For now, we note that
the two features work in our favor in the following way:
Given the matching, X (¢), at time ¢, we explore N (X (t))
in parallel to determine if there is a matching X’ which is
heavier than X (t). If yes, we use the heaviest such match-
ing at time ¢t + 1. Else, we continue to use the matching
X (t) at time t + 1. The two observations made above sug-
gest that the weight of the matching at time ¢ + 1 is likely
to be quite good. The details follow.

Given a matching X = [z;;], let (i) = j if z;; = 1.
That is, the matching X connects input 7 to output 7(z).
This allows us to shorten the representation of a matching;
for example, suppose N = 3 and consider the matching:

010
100
0 01

X =

It can be represented as the vector (w(1),7(2),7(3)) =
(2,1,3).

Definition 1. (Neighbor) A matching Y is said to be a
neighbor of the matching X iff there are exactly two inputs,
say i1 and o, such that Y connects input i to output (i)
and input 12 to output 7(31). All other input-output pairs
are the same under X andY .

Note that X and Y differ in only two edges, the other
N — 2 edges are the same for both.

Definition 2. (Neighborhood set) The set of all neighbors
of a matching X will be denoted by N (X). Note that the
cardinality of N (X) is (5).

As an example, consider a 3 x 3 switch. The matching
X and its 3 neighbors X, X5 and X3 are given below:

X =(1,2,3)
Xy = (21 1a3)7 X2 = (1a3a2)a X3 = (372a 1)

A. A Hamilionian walk on matchings

Before presenting the algorithm we need one last con-
cept, that of a Hamiltonian walk on the set of all match-
ings. We introduce the walk and use it in the description
of the APSARA algorithm only because this allows us to

11

prove that APSARA achieves upto 100% throughput. In
the section on simulations we do not use this concept, and
yet we shall find that APSARA achieves 100% throughput.

Consider a graph with N! nodes, each corresponding to
a distinct matching, and all possible edges between these
nodes. Let Z(t) denote a Hamiltonian walk on this graph;
that is, it visits each of the N distinct node one after the
other exactly once between time ¢t = 1,. .., N!. We extend
Z(t) fort > N!by defining Z(t) = Z(t mod N!). One
simple algorithm for such a Hamiltonian walk is described,
for example, in Chapter 7 of [8]. This algorithm produces
Z(t) such that, for all ¢, Z(t + 1) is neighbor of Z(t).
When this algorithm is executed for N = 3 it generates the
matchings: Z(1) = (1,2,3), Z(2) = (1,3,2), Z(3) =
(3,1,2), Z(4) = (3,2,1), Z(5) = (2,3,1), Z(6) =
(2,1,3),and Z(7) = Z(1), Z(8) = Z(2), ...

B. APSARA: The basic algorithm

Let X (t) be the matching determined by APSARA at
time ¢ and let Q(¢ + 1) be the queue-lengths at the be-
ginning of time ¢ + 1. At time ¢ + 1 APSARA does the
following:

(i) Determine the neighbors, A (X (¢)), of X (t) and the
matching Z(t + 1) corresponding to the Hamiltonian walk
attime ¢ + 1.

(i) Let S(t+1) = N(X(£))U Z(t+ 1)U X (t). Compute
the weight of every matching Y € S(¢ + 1) as follows:

W)= Zyijqz'j(t + 1).

(iii) The matching at time ¢ + 1 is given by

X(it+1) = W(U)},
() argyggasjrl){ ()}

The basic version of the APSARA algorithm described
above requires the computation of the weight of neighbor
matchings. Note that each such computation is easy since
a neighbor Y differs from the matching X (¢) in exactly
two edges. However. computing the weights of all (§)
neighbors, if done in parallel as shown in figure 1, will
require a lot of space in hardware for large values of IV.

But high-aggregate bandwidth switches come in two
flavors: (i) a small number of ports connected to very
high-speed lines, or (ii) a large number of ports connected
to lower-speed lines. So, if the goal is to build a high-
aggregate bandwidth switch with a small number of ports
(say, 30-40 ports), then one requires less than 800 modules
for computing the weights of neighbor matchings. The big

win in this case is time (APSARA requires only iteration),
and for switches connected to high speed lines the time
available for scheduling packets is very small. Thus, AP-
SARA helps in this case by trading off space for time.

If, on the other hand, one wants to build a switch with
1000 ports, say, then one needs upto 500,000 modules.
This can be prohibitively expensive. We approach this is-
sue from a different direction. Say that hardware space
constraints allow the use of at most K < N? modules,
then how can the search procedure required by APSARA
be conducted efficiently?

One obvious solution is to the search the neighborhood
set over multiple iterations by reusing the K modules. Af-
ter all, at low line speeds there is more time for scheduling
packets, allowing one to conduct more iterations. How-
ever, if line speeds are high and one is only allowed one
iteration, then the question arises as to which K neighbors
should be chosen. A deterministic procedure for choosing
the K neighbors will usually result in poor choices since, a
priori, it is not clear which neighbors are heavy. It is better
to choose K neighbors at random and use the heaviest of
these. This motivates the following variant of APSARA.

C. APSARA: A randomized variant

Suppose hardware constraints allow the use of only K
modules. Given the matching used at time ¢, X (t), and the
queue-lengths Q(t + 1), the matching X (t + 1) is deter-

mined as follows:
(i) Pick K elements uniformly at random from the set
N(X(t)). Let Nic(X (t)) denote the set of these elements.

Note that it is not necessary to generate N (X (t)). Deter-
mine the matching Z(t + 1) corresponding to the Hamil-

Alt+1)
Tx()] 1
E E, ceean E_
% v [
\ Comparator 7
.................. [xiesn

Fig. 1. A schematic for the implementation of APSARA. The
old matching, X (¢), and the new arrivals, A(¢+ 1), are used
to compute the weights of neighbor matchings in parallel.
The new matching, X (¢ + 1), is determined as a result of
weight comparison.

tonian walk at time ¢ + 1.
(ii) Let S (t + 1) = Ng(X(@#)) U Z(t + 1) U X (t). For
every Y € Sk(t + 1), compute

wW({)= Z Yi59i;(t + 1).
ij

(iii) Then

X(t+1)=arg w(U)},

We conclude the description of APSARA by mention-
ing one last point. APSARA generates all the matchings
in the neighborhood set oblivious of the current queue-
lengths. The queue-lengths are only used to select the
heaviest matching from the neighborhood set. It is there-
fore possible that the matching determined by APSARA,
while being heavy, is not of maximal size. That is, there
exists an input, say ¢, which has packets for an output 7,
but the matching X (t) connects input 7 to some other out-
put j' and connects output j some other input i’, and both
g;;(t) and gy ;(t) are equal to 0. Thus, input ¢ and output
4 will both idle unnecessarily.

max {
UeSk (t+1)

If needed, it is easy to complete the matching X (¢) de-
termined by APSARA into a maximal matching. We shall
call the maximal version Max-APSARA.

D. APSARA: Throughput Theorem

We state the following theorem, whose proof is not pro-
vided in this extended abstract due to space limitations.

Theorem 1. APSARA is stable (i.e. achieves upto 100%
throughput) for any admissible Bernoulli i.i.d. packet ar-
rival process.

V. PERFORMANCE

We compare the performance of APSARA with that of
other known algorithms: iSLIP and iLQF (both run upto
N iterations) and MWM., As gentle reminder, we do not
use the matching Z(t), given by the Hamiltonian walk
process. While this version of APSARA should perform
worse (since it has one less matching at its disposal), we
shall see that even this version performs quite well, giving
upto 100% throughput and good delays.

A. Simulation settings
Switch: Switch size: N = 32. Each VOQ can store upto
10,000 packets. Excess packets are dropped.

Input Traffic: All inputs are equally loaded on a nor-
malized scale, and p € (0,1) denotes the normalized

12

load. The arrival process is Bernoulli i.i.d.. Let |k| = (k
mod N). The following load matrices are used to test the
performance of APSARA.

1. Uniform: XAij = p/N Vi, j. This is the most commonly
used test traffic in the literature.

2. Diagonal: A = 2p/3N, iy = p/3N Vi, and
Ai; = 0 for all other 7 and j. This is a very skewed load-
ing, in the sense that input s has packets only for outputs
i and |7 + 1. It is more difficult to schedule than uniform
loading.

3. Logdiagonal: Xij = 2X;5,1 and }; A;; = p. For ex-
ample, the distribution of the load at input 1 across outputs
is: \y; = 2¥~9p/(2N — 1). This type of load is more
balanced than diagonal loading, but clearly more skewed
than uniform loading. Hence, the performance of a spe-
cific algorithm becomes worse as we change the loading
from uniform to logdiagonal to diagonal.

Performance measures: We compare performance of dif-
ferent algorithms by measuring the mean input queue-
lengths. The delays can be computed directly using Little’s
formula. '

We let the simulation run until the estimate of the aver-
age delay reaches the relative width of confidence interval
equal to 1% with probability > 0.95. The estimation of
the confidence interval width is obtained using the batch
means approach,

B. Simulation results: Basic version

Uniform Traffic
10000

1000

100

Mcan IQ Len

s s s L n
05 06 07 08 09
Normalized Load

"
03 04 1.0

Fig. 2. Mean IQ length for uniform traffic. APSARA is well-
behaved but its queue occupancies are greater than all the
other algorithms for low loads, since it is not maximal.

Figures 2, 3 and 4 show the mean input queue-lengths
for uniform, diagonal and logdiagonal loading. Among
all the algorithms considered APSARA is the only non-
maximal algorithm, in the sense that for low load some ad-

13

Diagonal Teaffic
10000 T

MWM
- APSARA
~-we MaxAPSARA
1--e-— isup
—-=— iLQF

Mean 1Q Len

0.001

L . L :
0s 06 07 o8
Normalized Load

0.\2 0:3 Dj4
Fig. 3. Mean IQ length for diagonal traffic. APSARA is the
only algorithm able to approximate the MWM with bounded

delays.

LogDiagonal Teaffic
10000 T T T

—— MWM
—-x--- APSARA

- MaxAPSARA
—&— iSUP
--a— {LQF

1000 F

Mean 1Q Len

0.1

0.0t

L L

0.001 4 .
0.1 04 05 0.6 038

Normalized Load

0.7

Fig. 4. Mean 1Q length for logdiagonal traffic. Also in this
case APSARA is the only algorithm able to approximate the
MWM with bounded delays.

ditional connections could be added in the schedule. This
explains why APSARA shows delays greater than all the
other algorithms for low load. Max-APSARA is able to
bridge the gap in the delays, and the effect of the maxi-
mizing the matching decreases with the increasing load,
implying that APSARA becomes maximal at high loads.
The main observation from these simulation results is that
both APSARA and Max-APSARA are able to reach 100%
throughput under all possible traffic loading.

Table I reports the maximum achievable throughput for
all the traffic considered.

C. Simulation results: Randomized variant

We next study the performance of the randomized vari-
ant of APSARA in order to understand the performance
degradation due to the reduced number of neighbors ex-

Algorithm || Uniform | Logdiagonal | Diagonal
MWM > 99% > 99% > 99%
APSARA | > 99% > 99% > 99%
iLQF > 99% ~97% ~ 87%
iSLIP > 99% ~ 83% ~ 82%
TABLE1

Maximum achievable throughput for different schedulers.
APSARA is able to reach the same throughput as MWM under
all traffic scenarios considered.

plored. We only consider the diagonal and logdiagonal
loading (the randomized version performs well under uni-
form loading). We shall denote by APSARA-K the curves
corresponding to the exploration of K neighbors. Thus,
for N = 32, the basic version is denoted as APSARA-496
(K = (322) = 496). We consider two randomized ver-
sions: K = N = 32 and K = logy N = 5, denoted by
APSARA-32 and APSARA-5 respectively. Figure 5 and 6
show the mean IQ length for the diagonal and logdiago-
nal loading. As K decreases, of course the average delay
increases; not by much under logdiagonal loading and by
quite a bit under diagonal loading. Somewhat surprisingly,
the throughput performance of APSARA with K = log N
is quite good, upto 100%.

LogDiagonal Traffic

—+— APSARA-496

--- APSARA-32

-+ APSARA-S
MaxAPSARA-196
MaxAPSARA-32
--@-- MaxAPSARA-S

Mean 1Q Len

0.001 N s s L L L L L

Fig. 5. Mean IQ length for logdiagonal traffic. Two randomized
versions of APSARA are shown, with |K| = N and |K| =
log, N, together with their maximal versions.

V. CONCLUSIONS

This paper proposes a switch scheduling algorithm
called APSARA which exploits some specific features
of the way packet switches operate to provide good per-
formance while being simple to implement. APSARA
achieves upto 100% throughput and simulations show that

14

Diagonal Traffic

of ———— APSARA-496
;| w2 APSARA-32

~=@-+ MaxAPSARA-S

Mean 1Q Len

0.0l E

0.001 i et
01 02 ©03 04 05 06 07 08 09 10
Normalized Load

Fig. 6. Mean IQ léngth for diagonal traffic for the randomized
versions of APSARA.

it provides very low average delays, comparable to that
of the maximum weight matching. Since it uses hard-
ware parallelism to search multiple candidate matchings,
it only requires a single iteration. This makes it attractive
for use in high-speed and/or large-sized switches. We have
also explored a randomized version of the algorithm which
searches a much smaller number of candidate matchings
and have found the performance degradation to be quite
small.

REFERENCES

[1] McKeown N., Anantharan V., Walrand J., “Achieving 100%
throughput in an input-queued switch”, IEEE INFOCOM’96,
vol. 1, San Francisco, Mar. 1996, pp. 296-302

[2] Tassiulas L., Ephremides. A., “Stability properties of constrained
queueing systems and scheduling policies for maximum through-
put in multihop radio networks”. IEEE Trans. on Automatic Con-
trol, vol. 37, n. 12, Dec. 1992, pp. 1936-1948.

[3] Dai J., Prabhakar B., “The throughput of data switches with
and without speedup”, IEEE INFOCOM 2000, vol. 2, Tel Aviv,
Mar. 2000, pp. 556-564

{41 McKeown N., “iSLIP: a scheduling algorithm for input-queued
switches”, IEEE Trans. on Networking, vol. 7, n. 2, Apr. 1999,
pp- 188-201.

{5} McKeown N., “Scheduling algorithms for input-queued cell
switches”, Ph.D. Thesis, Uni. of California at Berkeley, 1995.

[6] Ajmone Marsan M., Bianco A., Leonardi E., Milia L., “RPA: a
flexible scheduling algorithm for input buffered switches”, IEEE
Trans. on Communications, vol. 47, n. 12, Dec. 1999, pp. 1921-
33. :

(71 Duan H., Lockwood J.W., Kang S.M., Will I.D., “A high per-
formance OC12/0C48 queue design prototype for input buffered
ATM switches”, [EEE INFOCOM’97, vol. 1, Kobe, 1997, pp. 20-
28.

{8] Nijenhuis A., Wilf H., “Combinatorial algorithms: for comput-
ers and calculators”, 2"¢ Edition, Academic Press, chap. 7, New
York, 1978, p. 56.

