An Efficient Randomized Algorithm
for Input-Queued Switch Scheduling

Devavrat Shah, Paolo Giaccone, Balaji Prabhakar
devavrat@cs.stanford.edu, giaccone @polito.it, balaji@isl.stanford.edu
Dept. of CS, Stanford University; Dept. of EE, Politecnico di Torino; Depts. of EE and CS, Stanford University

Abstract— The essential problem in the design of high-performance
schedulers for input-queued switches is the determination, in each time slot,
of a good matching between inputs and outputs for the transfer of packets.
The rapid increase of line rates is making this very difficult: finding good
matchings takes time, and there is very little time st the highest line speeds.
A similar difficulty arises when designing schedulers for switches with a
large number of ports.

Randomized algorithms have proved particularly effective in providing
good scalable solutions to problems where decisions need to be made within
a limited amount of time and/or with little information. The main idea of
randomized algorithms is simply stated: Basing decisions on a few ran-
domly chosen samples is often a good surrogate for basing decisions with
complete knowledge of the state.

This paper is about the design of randomized algorithms for switch
scheduling. We begin by examining the difficulty of implementing well-
known deterministic solutions like the maximum weight matching algo-
rithm, discuss a simple randomized proposed by Tassiulas (1], develop a
suite of novel randomized algorithms, and discuss their theory and perfor-
mance.

I. INTRODUCTION

Many networking problems suffer from the so-called ‘curse
of dimensionality’; that is, although excellent (even optimal) so-
lutions exist for these problems, they do not scale well to high
speeds and/or to large systems. In a variety of other situations
where the scalability of deterministic algorithms is poor, ran-
domized versions of the same algorithms are easier to imple-
ment and provide surprisingly good performance. For example.
compelling demonstrations are provided in the recent papers of
[2). [3], [4] for load balancing, and {5] for document replace-
ment in web caches. Other examples and a good introduction to
the theory of randomized algorithms may be found in the book
by Motwani and Raghavan [6].

This paper focuses on the application of randomization to the
design of input-queued (IQ) switch! schedulers.

1 Matching. M
Inpu L :':I:D\\ ’:——___Impu
witching (abric !
ATTY ["'/ |
PN
s
1 [N
Input ¥ -
p < ID\,_»: . :o...,.ng
AT -z~ -

Fig. 1. Logical structure of an input-queued cell switch

Figure 1 shows the logical structure of an N x N IQ packet
switch. We assume the switch operates on fixed-size cells

I'We take for granted the goodness of the 1Q architecture for very high speed
and for large-sized switches. Several references (e.g. [8], [13]) attribute this to
the minimal memory bandwidth requirement of the IQ architecture in compari-
son to the output-queued and shared-memory architectures.

0-7695-1357-3/01 $10.00 © 2001 [EEE

(or packets). Each input has NV FIFO ‘virtual output queues’
(VOQs), one for each output. This VOQ architecture avoids
performance degradation due to the head-of-the-line blocking
phenomenon [8].

In each time slot, at most one cell arrives at each input and at
most one cell can be transferred to an output. When a cell with
destination j arrives at input , it is stored in the virtual output
queue, denoted Q;;. Let the average cell arrival rate at input ¢
for output j be A;;. The incoming traffic is called admissible
if 8, Ay < L,Vjand) Aj < 1,Vi. In words, these
conditions ensure that no input or output is oversubscribed.

The scheduling problem can be modeled as a matching prob-
lem in a bipartite graph, with NV input nodes and N output nodes.
The edge from input 7 and output j is present if ();; is non-
empty and is given the weight w;; which equals the length of
Qi;. Given the transfer constraints in the switching fabric, a
matching for this bipartite graph is a valid schedule. For ex-
ample, Figure 2 shows a weighted bipartite graph and one valid
matching (or schedule). Note that a valid matching can be seen
as a permutation of the IV outputs, and in this paper we will use
the words schedule, matching and permutation interchangeabty.

Graph G
w

Match M

Fig. 2. Bipartite graph description of the scheduling problem

It is known that the maximum weight matching (MWM) al-
gorithm delivers a throughput of up to 100% [8], [9], [10], and
provides low delays by keeping queue-sizes small. However,
it is too complex to implement since it requires O(N?) itera-
tions [11] in the worst-case. Therefore, an efficient design of
the overall system (scheduler and switching fabric) requires the
best possible compromise between ease of implementation and
goodness of throughput and delay performance.

As pointed out in [12], the specific issues in high-performance
router design depend on whether the router operates in back-
bone networks or in enterprise networks. Routers in backbone
networks, which interconnect a small number of enterprise net-
works, have few ports operating at a high line rate. Hence a good
scheduling algorithm in this scenario needs to have a low time-
complexity. The routers used in enterprise networks typically
have a large number of ports connected to slower speed lines.

3

Although smaller line rates allow more time for scheduling, this
time is consumed by a greater number iterations stemming from
the large number of ports.

Several good switch scheduling algorithms have been pro-
posed; notably iSLIP [13], iLQF [14], RPA {15] and
MUCS [16]. With centralized implementations the run-time of
these algorithms is O(N2) or more [17]; but by adopting paral-
lelism and pipelining (that means adding spatial-complexity in
hardware) their time-complexity can be decreased considerably.
However, the performance of these algorithms is poor compared
to MWM under non-uniforminput traffic: they induce very large
delays and their throughput can be less than 100%. Further, it
is unlikely that solutions which intrinsically possess an O(N?%)
run-time complexity can be scaled for implementation in high-
speed and large-sized switches.

This paper attempts to design low-complexity switch sched-
ulers by exploiting the power of randomized algorithms. We
begin by observing some features of the switch scheduling
problem that can be exploited, discuss earlier randomized ap-
proaches, and obtain, through a series of ‘evolutionary steps’,
some new low-complexity randomized switch scheduling algo-
rithms.

A. The main features of our approach

Our approach is based on the following observations:

{a) The state of the switch, captured, for example, by its queue-
lengths, does not change by much between two consecutive time
slots. Thus, it is likely that good matchings at times ¢t and ¢t + 1
are quite closely related in that the heavier edges in the one are
likely to be in the other. This suggests it is possible to use the
matching at time ¢ for devising the matching at time ¢ + 1, and
there is no need for computing matchings from scratch in each
time slot.

(b) A randomly generated matching can be used to improve the
matching used at time ¢ for obtaining the matching at time ¢ + 1.
fc) Most of the weight of a matching is typically contained
in a small number of edges. Thus, it is more important to
choose edges at random than it is to choose matchings at ran-
dom. Equally, it is more important to remember the few good
edges of the matching at time ¢ for use in time ¢ + 1 than it is to
remember the entire matching at time ¢.

The recent paper of Tassiulas [1] proposes a very simple ran-
domized algorithm that is mainly based on features (a) and (b).
The algorithm can be described as follows. At time ¢ + 1 choose
a matching R uniformly at random from the N'! possible match-
ings. Compare the weight of R with the matching M used at
time ¢, use the heavier matching as the schedule at time ¢ + 1,
and remember it for the next time slot. He proved that this al-
gorithm achieves up to 100% throughput. However, as we will
see later, the delays experienced by packets under this matching
can be very large. Essentially, it is feature (¢) that needs to be
exploited for controlling delays.

We use all three features (a), (b) and (¢) to devise an efficient
randomized algorithm, called LAURA. It can be proved that it
achieves a throughput of up to 100%. Simulations show that it
provides delays close to that of MWM, and outperforms all other
known low-complexity scheduling algorithms. LAURA needs
an external source of randomness to obtain random matchings

each time. This can cause some difficulty in implementation.
To overcome this we propose an enhanced version of LAURA,
called SERENA, which exploits the randomness present in the
arrivals process to determine good random matchings. Fortu-
itously, this also improves the performance, since the arrivals
are precisely what increase the weight of edges. Using them
leads to better (heavier) schedules.

II. DISCUSSION OF RANDOMIZED APPROACHES

Using simulations we present a series of steps for determin-
ing the right criteria for designing efficient randomized schemes.
We begin with some naive schemes, progressively make design
decisions for improving their performance, and end up with the
schemes LAURA and SERENA. We now describe the simula-
tion setup that we shall use.

A. The Simulation Seiting

The Switch: The size of the switch, N, equals 32. Each VOQ
has a maximum capacity, Qmax. Of 10000. Buffers are not
shared. Excess packets are dropped.

Input Traffic: Packets arrive at inputs according to indepen-
dent and identically distributed (i.i.d.) Bernoulli processes. All
inputs have equal normalized load, and the corresponding load
factor is denoted by p. In the following we abbreviate k. mod N
to |k|.

The loading matrices considered are:

1. Uniform: Ai; = p/N Vi, j. This is the most commonly used
test traffic in the literature.

2. Diagonal: Ai; = 2p/3N, Ajjiy1) = p/3N Vi,and Ay; =0
for all other and 7. This is a very skewed loading, in the sense
input only has packets outputs 7 and |7 + 1{. It is more difficult
to schedule this type of traffic than it is to schedule uniform
loading, since arrivals favor the use of only two matchings out
of the 32! possible matchings.

3. Logdiagonal: Aijj = 2Ayj4.1) and >; Aij = p. For exam-
ple, the distribution of the load at input 1 across outputs is:
Ay = 2N-ip/(2V —1). This type of load is more balanced
than diagonal loading, but clearly more skewed than uniform
loading. Hence, the performance of a specific algorithm will
worsen as we change the loading from uniform to logdiagonal
10 diagonal. .

Performance measures: Algorithms are compared on the ba-
sis of the mean input queue-lengths they induce, delays can be
computed using Little's formula.

We let the simulation run until the confidence interval of the
estimated average delay reaches a relative width of 1% with
probability > 0.95. The estimation of the confidence interval
uses the batch means approach.

B. RandomI

In this and the next few sections we present various random-
ized algorithms. Due to limitations of space, we shall con-
sider their performance only under diagonal loading. This type
of loading is particularly discriminating with randomized algo-
rithms, because it requires them to find good matchings at ran-
dom from a large space of possible matchings.

We proceed with the first randomized algorithm, called Ran-
dom 1. Tt is the most obvious randomized algorithm and works
as follows:

(a) Every time pick a matching R uniformly at random from all
possible N'! matchings.
(b) Use R as schedule.

10000 e -

—— MWM
~=-s--- Rud [
=== Rnd 1

Mean IQ Len

" i 1
00 0.2 04 06 08 Lo
Normalized Load

Fig. 3. Random I has u very poor throughput und delay performance. Rundom
11 is better than Random I, but still quite bud when compared with MWM.
This figure wus generated under diugonul traffic pattern.

The performance of this algorithm, displayed in Figure 3,
shows that the average queue-length under diagonal traffic pat-
tern is excessive when the load p > .06.

C. Random Il

An obvious refinement of the previous algorithm, which we
call Random 11, is the following:
(a) Choose d > 1 matchings uniformly at random in each time
slot.
(b) Use the highest of these matchings as the schedule.

For a choice of d = 32, Figure 3 shows that Random II per-
forms better than Random I (as expected). However, its perfor-
mance is still quite poor compared to MWM.

D. Random IlI

This algorithm, originally proposed by Tassiulas [1], works
as follows:
(a) Let S(¢) be the schedule used at time ¢.
{b) At time t + 1 choose a matching R(t + 1) uniformly at
random from the set of all N! possible matchings.
(c) Let the schedule at time ¢ + 1, S(¢ + 1), be the heavier of
S(t)and R(t + 1).
As mentioned earlier, observe that Random I1I exploits the fact
that state of the input buffers don’t change by much during suc-
cessive time slots. Tassiulas [1] shows that this makes Random
IIT a stable matching; that is, it delivers a throughput of up to
100%. It clearly outperforms Random II (see Figure 4) in terms
of delay. But, when compared with MWM, the delays it induces
are still very large even when the load is approximately 40%
(again, see Figure 4)..

E. RandomIVv

We now use the observation that most of the weight of match-
ing is typically carried in a few edges, and therefore it is better to
remember edges between iterations than it is to remember entire
matchings. To elaborate on this point, note that under uniform
loading most edges have similar weights and it does not matter
which matching is used. This is also the main reason that most

10000 -
R . — MWM
—-n-- Rnd[V-rm
x* cmees Rnd IV
wo b o]-—s— Radm
ol 7

Mean [Q Len

0.t 02 03 04 05 06 07 08 09 IO
Normalized Load

Fig. 4. Random III, although theoreticully stuble, results in very high deluys.
Rundom IV outperforms Rundom Il since it keeps the most significant edges
from one fime slot 1o the other. This figure wus generuted under diugonal
truffic puttern.

algorithms perform well under uniform loading. But, when the
loading is non-uniform, edge-weights are highly skewed: most
of the weight of a randomly chosen matching is carried in very
few edges. Algorithms which exploit this, therefore, typically
outperform algorithms which don’t.

Definition 1. Let F,(M) be the minimal set of edges in a
matching M carrying at least i) fraction of the total weight of M.
Let |7, (M)| denote the cardinality of 7, (M). Here0 < n < 1,
is the selection factor.

As the next step in our evolutionary development, consider

the algorithm Random IV described below:

(a) Let S(t) be the matching used at time ¢.

(b) Compute F,(S(2)).

(c) At time ¢ + 1, let R(t + 1) be the matching which first
uses the edges in F,(S(¢)). This leaves N — |F,(S(t))| in-
put/output nodes unmatched. R(¢+1) connects these unmatched
input/output nodes using a randomly chosen matching.

(d) Let S(¢ + 1) equal the heavier of R(¢ + 1) and S(2).

Random IV can be generalized to Random IV-rm, that stores
m matchings from the past and considers r random matchings,
obtained by applying the phase (c) of Random IV r times inde-
pendently, to improve each of these m matchings.

Figure 4 shows the performance improvement given by Ran-
dom IV and Random IV-rm withp = 0.5and m = r = N. The
idea of keeping the “best” edges of a matching, from one time
slot to another, is promising and we will use it in our innovative
scheduler called LAURA.

III. LAURA

LAURA is mainly based on the following ideas:
1. Use “good” schedules from previous time, and avoid com-
putation from scratch every time.
2. Obtain good random matching using a very different tech-
nique, which is sensitive to higher weight edges.
3. Instead of choosing better of two different schedules, merge
them to obtain better solution.

The complete algorithm is described below. But we would
like to note that, in the interest of space, we do not describe
some details of the algorithm. Let M, ..., Mg be S distinct

matchings remembered from past. Let 1)(M) denote weight of
matching M at the current time. Every time do the following:
(i) Obtain V random matchings X3, ..., Xv from V indepen-
dent trials of procedure RANDOM, which is described in next
section.

(ii) Obtain higher weight schedules, M]; = MERGE(M;, X),
forl <1< 5,1 <j < V. Procedure MERGE is described in
next section.

(iii) Let M; = arg max;{%(M;)}.

(iv) Let My, = arg max,-{M,-}, which is used as schedule. In
case of Max-LAURA version, the maximized version of M, ..
is used.

(v) Retain only the S matchings with the highest weight among
all S x V schedules Mj;.

Next we explain the two procedures used by LAURA.

A. RANDOM Procedure

The random selection procedure finds a random matching de-
pendent on the weight matrix. At the same time, the random
selection cannot be based on a non-uniform random selection
based on the weights, since it is too complex to be implemented.
To obtain an effective and simple random selection procedure,
RANDOM runs in multiple stages to obtain a weight dependent
schedule, while at each stage it uses random matching gener-
ated independent of weights. RANDOM procedure is described
as follows: Initially, all inputs and outputs are marked as un-
matched. The following steps are repeated in each of I itera-
tions:

(i) Let1 <1 < I bethe current iteration number. Let £ < N be
the number of unmatched input-output pairs. A random match-
ing X; (k) of this unmatched bipartite graph is chosen uniformly
at random from the k! possibilities.

(ii) If © < I. retain the edges corresponding to F,(X;(k)) and
mark the nodes they cover as matched. If ¢ = I, then retain all
edges of X;(k).

The above procedure gives a complete matching with N
edges.

Old Matching M1 Random Matching M2

Weight = 209 Weight = 106

Merged Matching X
Weight = 217

Fig. 5. Merging example for matching M1 and M2. The weight of the final
matching is always greater or equal to the maximum among M1 and M2.

B. MERGE Procedure

MERGE}'unS on two matchings M; and M, and returns a
matching M. Itis described as follows.

Let G' = M; U Ms, in other words G’ is a bipartite graph
with the edges obtained by the union of matchings M; and M,.
Let M be initially a bipartite graph with no edges.

Phase A. Mark all N input and output nodes of G’ as un-
marked. Repeat the next six steps till all nodes in G are marked,
after visiting at most 2N edges, the phase ends:

(a) Let v be an unmarked input node. Set path P, = 0. Let
1(P,) denote weight of path P,. Initially, set 1(F,) = 0.

(b) Let (v,w) € M;. Add (v,w) to P,, and set Y(P,) =
Y(Py) + Yo, w).

(c) Let (w,u) € M. Add (w,u) to P,, and set Y(P,) =
Y(Py) ~ Y(w,u).

(d) If u = v stop. Else, repeat (b)-(c) for with v in place of v,
and update P, accordingly.

(e) Let My(P,) denote the edges of M; that belong to P,, and
similarly denote M2 (P,). If 4(P,) > 0, set M = MUM, (P,);
else M = M U My(P,).

(f) If any node q is unmarked, start from (a) with g in place of
.

Phase B. Output M as the solution, which has property
Y(M) > (M), p(Ma).

Figure 5 shows an example of merging of the two matchings
M1 and M2.

C. Stability Properties of LAURA

We state the following theorem:

Theorem 1. LAURA is a stable algorithm, i.e. it achieves 100%
of throughput under any admissible traffic patterns.

~ 'We omit the proof due to lack of space.
D. Running Time of LAURA

The worst case running time of LAURA is bounded by
O(VIN log, N + SV N). In our proposed implementation, we
set: I =log, N. S and V are constant. In particular, in our im-
plementation we set S = 2 and V' = 1. Hence, the running time
of the algorithm is: O(N log? N). This is quite low compared
to the running time of O(N?3) for MW M [11], of O(N?3) for
Maximum Size matching [19] and of all other approximations
proposed in literature [17].

Max-LAURA does extra work to make the matching maxi-
mal. If / of N nodes are left unmatched, then a simple algorithm
to get maximal matching takes worst case time of O(I%). If I is
small, this is negligible compared to the rest. From simulation
study we find that, in most of the cases, I &« N, which suggests
that the additional work done by Max-LAURA is negligible.

E. Robusiness of LAURA

We explored the sensibility of LAURA to several parameters,
in order to understand its robustness when its complexity is de-
creased. We studied the sensibility to I, S, dassn and also we
studied a derandomized version of it. In all the cases, we expe-
rienced always delays comparable to the original LAURA ver-
sion.

Old Matching M1
23

Arrival Graph A

*”r-——e
47
)
31 *
9 o s
97
Weight = 209 @
>
e o
e, .
sl
r—e

Merged Matching X
Weight = 243

Fig. 6. ARRIVAL-MERGE example for matching M1 and arrival graph A. The
final weight is always greater or equal to the weight of M1.

IV. SERENA

We now discuss a variant of LAURA, which uses the arrivals
as source of randomness and an innovative merging algorithm.
The randomization in LAURA is used to obtain unknown heavy
edges with low complexity. Now observe that an edge becomes
heavy, if its corresponding queue receives many arrivals and few
services. Hence, the randomness provided by arrivals can be
captured and exploited to find heavy edges. Whereas the basic
version of LAURA merges the past schedule with a randomly
generated matching, SERENA considers the edges that received
arrivals in the previous time, and merges them with the past
matching to obtain a higher weight matching. Note that merg-
ing of existing schedule and the arrival edges is not as simple as
the MERGE procedure of LAURA since arrivals need not occur
in a complete matching form. For this reason we denote it as
ARRIVAL-MERGE procedure. Note that this procedure is very
easy to be implemented since the randomness is obtained by ob-
serving only N edges. We do not discuss how the merging is
done for this special case due to lack of space, but due to input
constraints of one arrival per input. it can be done in O(N) time.

SERENA which is briefly described here:

{a) Let M (t) be matching used at time ¢ — 1.

(b) Let A(t) = (A;(t)) denote the arrival graph, where
A;;(t) = 1indicates arrival, and A;;(t) = 0, otherwise.

(c) Let S(¢t) ARRIVAL-MERGE(M (), A(£)). where
ARRIVAL-MERGE 15 a special procedure, which we describe by
an example in Figure 6.

(d) Use S(t) as schedule, and M (t + 1) = S(¢).

SERENA takes O(VN + SV N), and for particular choice of
V, 5. itis O(N).

We would like to note that SERENA is a self-randomized al-
gorithm. It does not use any external randomization.

V. PERFORMANCE STUDY

Figures 7, 8 and 9 compare the performance of LAURA and
Max-LAURA (using the settings of Table I) with some well

known algorithms known in literature: iSLIP [13] (with N it-
erations) and iLQF [14] (with N iterations). LAURA shows
poor delays for low load, because it is not maximal. By mak-
ing it maximal, the Max-LAURA has delays as good as MWM
even for low loads. LAURA and Max-LAURA outperform all
the other approximating algorithms for high load under non-
uniform traffic patterns.

Uniform Traffic

10 T T T A—

——

Mean 1Q Len

Fig. 7. For uniform traffic, all the considered algorithms are well behaved.

Diagonal Traffic
10000 T

1000

Meau [Q Len

—

02

R

‘ " -
0.5 0.6 0.7
Normalized Load

.

08

0.01

:
0.1 03 0.4 0.9 Lo

Fig. 8. For diagonal traffic, LAURA and Max-LAURA are able to reach
the same throughput as MWM; Max-LAURA improves the performance of
LAURA since it is maximal.

Parameter | Symbol | Value |
random matching probes 1% 1
stored matchings S 2
iterations I 5
selection factor n 0.5

TABLE1
SIMULATION SETTINGS FOR LAURA AND MAX-LAURA

The Figure 10 compares the performances of SERENA and
LAURA-S1 (i.e., only one stored matching). It shows that
ARRIVAL-MERGE of SERENA outperforms the usual MERGE
of LAURA which uses RANDOM procedure. But ARRIVAL-
MERGE requires some what more complex data structure. The
choice of SERENA and LAURA should be decided based on the

7

LogDiagonal Traffic
10000 T T v -

—— MWM
—-+--- MaxLAURA

3
2
]
0.001 b - = - L ® L L
o1 02 03 04 05 06 07 08 09 1O
Normalized Load
Fig. 9. For logdiagonal traffic, LAURA and Max-LAURA outperforms the

other approximating algorithms for high load.

Diagonal Traffic
1000 T T T T T T T T

—+— LAURA-SI
--w--- SERENA

Mean 1Q Len

ot f 1

0.1 02 0.3 04 05 0.6 07 0.8 0.9 10
Normalized Load

. 10. SERENA is compared for diagonal wraffic with LAURA using one
stored matching (S = 1). In this case, the ARRIVAL-MERGING used in
SERENA outperforms the MERGING of LAURA-S1.

overall system performance-design tradeoff.
VI. CONCLUSIONS

The paper presents a new randomized switch scheduling algo-
rithm, called LAURA, that approximates the Maximum Weight
Matching (MWM) algorithm. LAURA gives a throughput of
100% for all admissible Bernoulli i.i.d. inputs. Simulation stud-
ies show that it approximates the delays of MWM very well,
and outperforms all known heuristics. Its run-time complexity
is O(N log® N). We also presented another algorithm, called
SERENA, which uses the randomness present in packet arrivals
and hence does not need an external source of randomness. The
run-time of SERENA is O(NV). Thus, as algorithms that provide
good delay properties, SERENA (and LAURA) scale well with
the switch size and provide a feasible approach for designing
schedulers for high capacity routers.

REFERENCES
n

Tassiulas L., “Linear complexity algorithms for maximum throughput in
radio networks and input queued switches”, IEEE INFOCOM’98, vol. 2,
New York, 1998, pp. 533-539

Azar Y., Broder A., Karlin A.,Upfal E., “Balanced Allocations”, ACM
STOC, 1994, pp. 593-602,

Mitzenmacher M., “The power of two choices in randomized load balanc-
ing”, PhD thesis, University of California, Berkeley, 1996.

Vvedenskaya N., Dobrushin R., Karpelevich F., “Queueing system with
selection of the shortest of two queues : An asymptotic appro Problems of
Information Transmission, 1996.

(21
(3]
4

(5]
(6]
M

(8]

91

[10]

{11]

[12]

{13]

[14]

(15}

[16}

{17]

(18]

{19]

Psounis K., Prabhakar B., “A randomized web-cache replacement
scheme”, IEEE INFOCOM’01, Anchorage, Alaska, April 22-26, 2001.
Motwani R., Raghavan P.,, “Randomized algorithms”, Cumbridge Univ.
Press, 1995

Karol M., Hluchyj M., Morgan S., “Input versus output queuing on a
space division switch”, IEEE Truns. on Communications, vol. 35, n. 12,
Dec. 1987, pp. 1347-1356

McKeown N., Anantharan V., Walrand J., “Achieving 100% through-
put in an input-queued switch” IEEE Infocom 96, vol. 1,San Francisco,
Mar. 1996, pp. 296-302

Tassiulas L., Ephremides. A., “Stability properties of constrained queue-
ing systems and scheduling policies for maximum throughput in multi-
hop radio networks”. IEEE Truns. on Automutic Control, vol. 37, n. 12,
Dec. 1992, pp. 1936-1948.

Dai J., Prabhakar B., “The throughput of data switches with and without
speedup”, IEEE INFOCOM 2000, vol. 2, Tel Aviv, Mar. 2000, pp. 556-564
Tarjan R.E., Datu structures und network ulgorithms, Society for Indus-
trial and Applied Mathematics, Pennsylvania, Nov. 1983

Keshav S., Sharma R., “Issues and trends in router design”, IEEE Commu-
nications Mugugzine, vol. 36, n. 5, May 1998, pp.144-151

McKeown N, “iSLIP: a scheduling algorithm for input-queued switches”,
IEEE Trans. on Networking, vol. 7, n. 2, Apr. 1999, pp. 188-201
McKeown N., “Scheduling algorithms for input-queued cell switches”,
Ph.D. Thesis, Un. of California at Berkeley, 1995

Ajmone Marsan M., Bianco A., Leonardi E., Milia L., "RPA: a flexible
scheduling algorithm for input buffered switches”, IEEE Trans. on Com-
munications, vol. 47, n. 12, Dec. 1999, pp. 1921-33

Duan H., Lockwood J.W., Kang S.M., Will J.D., “A high performance
0OC12/0C48 queue design prototype for input buffered ATM switches”,
IEEE INFOCOM'97, vol. 1, Kobe, 1997, pp. 20-28.

Ajmone Marsan M., Bianco A., Filippi E., Giaccone P., Leonardi E., Neri
F., “On the behavior of input queuning switch architectures”, Europeun
Trans. on Telecommunications, vol. 10, n. 2, Mar. 1999, pp. 111-124
Goudreau M.W.,, Kolliopoulos S.G., Rao S.B., “Scheduling algorithms for
input-queued switches: randomized techniques and experimental evalua-
tion”, IEEE INFOCOM 2000, vaol. 3, Tel- Aviv, Mar. 2000, pp. 1634-1643
Hopcroft J.E., Karp RM., “An n?-3 algorithm for maximum matching
in bipartite graphs”, Society for Industrial und Applied Mathemutics J.
Comput., vol. 2, 1973, pp. 225-231

