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Abstrucc- In this paper we use fluid model techniques 
to establish two results concerning the throughput of data 
switches. For an input-queued switch (with no speedup) we 
show that a maximum weight algorithm for connecting in- 
puts and outputs delivers a throughput of loo%, and for 
combined input- and outputqueued switches that run at a 
speedup of 2 we show that any “I matching algorith- 
m delivers a throughput of 100%. The only assumptions on 
the input trafac are that it satisfies the strong law of large 
numbers and that it does not oversubscribe any input or any 
output. 

I. INTRODUCTION 

Packet switches based on an inputqueued (IQ) crossbar 
architecture are attractive for use in high speed networks. 
This is because the buffers which queue packets at the in- 
puts need only run twice as fast the line rates, That is, if 
time were slotted so that at most one packet arrived at each 
input of the switch per time slot, then an input buffer po- 
tentially needs to make upto two transactions per time slot: 
(1) write in an incoming packet, and (2) copy a buffered 
packet onto the crossbar fabric, Hence the bandwidth of 
the input M e r s  is no more than twice the line rate. In 
contrast, the buffers of an N x N outputqueued (OQ) 
switch are required to run at least N + 1 times the line 
rate. Even for moderately sized switches nmning at high 
speeds, memories with such large speedups we either very 
expensive or simply unavailable (see, for example, [20] for 
an elaboration of this point). 

However, IQ switches which maintain a single first-in- 
first-out (FIFO) buffer at the inputs are known to suffer 
from the so-called head-of-line (HoL) blocking problem. 
The paper of Karol et al[17J shows that this problem can 
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limit the throughput of the switch to about 58% when the 
input traffic is independent, identically distributed (i.i.d.) 
Bernoulli and the output destinations are uniform. This 
is in contrast to OQ switches which always deliver 100% 
throughput, since no output will idle as long as there is a 
packet in the switch destined for it. 

It has since been shown that the low throughput of IQ 
switches is merely an artifact of HoL blocking caused due 
to a FE0 organization of the input buffers, and that IQ 
switches can achieve a throughput of upto 100% by using 
a simple scheme known as “virtual output queueing” and 
by using suitable packet scheduling algorithms [20], [21], 
[%I. However, all of these results are shown to hold only 
when the input traffic is i.i.d. although they allow a non- 
uniform loading of the switch. 

It has been believed for some time now that an IQ switch 
can deliver 100% throughput for arbitrarily distributed in- 
put pattems so long as no input or output is oversubscribed. 
That is, the results of [20], [21], [%I ought to be true for a 
wider class of input distributions and that the i.i.d. assump- 
tion is only required by their method of proof. The first re- 
sult of this paper, Theorem 1, provides a proof of this belief 
using fluid model techniques. More precisely, Theorem 1 
proves that an IQ switch using a maximum weight match- 
ing algorithm can achieve a throughput of upto 1 0 %  when 
subjected to arbitrarily distributed input traffic that satisfies 
the following mild conditions: (i) It obeys the strong law of 
large numbers, and (ii) it does not oversubscribe any input 
or output. Theorem 1, therefore, builds upon and extends 
the work of [21] and [28]. 

After the appearance of [17], a number of researchers 
(for example, [6], [SI, [15], [16], [W]) considered improv- 
ing the throughput of an IQ switch by using fabrics with 
a moderate “speedup”’. A common conclusion of these s- 

‘A switch with a fabric speedup of s can remove up to s packets f” 
each input and deliver up to s packets to each output within a time slot. 
Hence. an OQ switch has a speedup of N while an IQ switch has a 

0-7803-588O-j/00/$10.00 (c) 2000 IEEE 556 IEEE INFOCOM 2000 

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore.  Restrictions apply. 



tudies is that with a speedup of 4 or 5 one can achieve upto 
100% throughput when arrivals are i.i.d. at each input, and 
the distribution of packet destinations is uniform across the 
outputs. 

One hopes that it is again possible to remove the i.i.d. 
restrictions on the input traffic patterns. In fact, more is 
true. Prabhakar and McKeown [23], Chuang et al[9], and 
Krishna et al [18] have recently devised a number of al- 
gorithms that allow a combined input- and output-queued 
(CIOQ) switch with an internal speedup of between t- 
wo and four to exactEy emulate (packet-by-packet) an OQ 
switch. Furthermore, these algorithms have been shown 
to work for all input traffic pattems and switch sizes. S- 
ince an OQ switch always delivers a throughput of 1008, 
the previously mentioned exact emulation ensures that the 
CIOQ switch also delivers a throughput of 100%. 

The results of [9], [18], [23] are obtained with specif- 
ic packet scheduling algorithms. It is interesting to ask 
just how well a CIOQ switch that employs an arbitrary, 
but well-chosen, scheduling algorithm performs as its fib- 
ric speedup is increased. Charny [4] and Charny et a l  [5] 
have recently obtained the following answer to this ques- 
tion: When the speedup of a CIOQ switch is at least 4 
and the input traffic is leaky bucket constrained, any max- 
imal matching algorithm (see Definition 5) delivers 100% 
throughput. Theorem 2 of this paper generalizes &is result 
in two ways: (i) It lowers the minimum required speedup 
to 2, and (ii) it removes the restriction of leaky bucket con- 
strained inputs. 

The results of this paper are derived by considering the 
fluid model analogs of an IQ or a CIOQ switch. The frame- 
work of fluid models has proved to be powerful in obtain- 
ing the maximum throughput region (or, the stability re- 
gion) of a variety of stochastic network under very mild 
assumptions on the input M c  (see [%I, [lo], 1141,1273, 
[A, [13], 1221, [ll], [3], [MI). For a general exposition 
of the stability analysis of stochastic networks using flu- 
id models, please refer to the recent set of notes by Dai 
[ 121. Ln the fluid model framework, in order to prove that a 
switch delivers a throughput of 100% it is enough to prove 
that the corresponding fluid model is weakZy stubk. This 
is the gist of Theorem 3. 

We conclude the introduction with a few words about 
the organization of the paper and about the practical sig- 

speedup of 1. For values of s between 1 and N packets need to be 
buffered at the inputs before switching as well as at the outputs after 
switching. We shall refer to this type of a switch as a combined input- 
and output-queued (CTOQ) switch. 

nificance of the results obtained. Since fluid model tech- 
niques are relatively new in the computer networking con- 
text, we have included an appendix in which the procedure 
for obtaining fluid limits for a discrete stochastic network 
(in this case, the network consists of a single switch) is 
given in detail. As mentioned previously, the fluid model 
method applies to very general traffic processes. Indeed, 
the only requirement is that they satisfy a strong law of 
large numbers. Since almost all real traffic processes satis- 
fy  this property, the results of this paper have a high prac- 
tical significance. A second aspect of this paper is that 
it shows that any “ a 1  matching algorithm delivers a 
100% throughput under a speedup of 2. The significance 
of this result derives from the fact that maximal matchings 
are easier to find than maximum matchings, and hence bet- 
ter suited for implementation. In particular, and to the best 
of our knowledge, this is the first proof that the popular 
and well-studied PIM [l] and SLIP [19] schedulers, which 
find maximal matchings, deliver a 100% throughput under 
arbitrary packet arrival pattems at a speedup of 2. 

11. MODEL AND NOTATION 

Consider an N x N crossbar switch such as the one 
shown in Figure 1. Assume that time is slotted and that 
packets arrive at the switch at the beginning of a time slot. 
For concreteness, time slot n corresponds to the time inter- 
val [n-l,n), n = 1,2,. . .. Each input hasabuffer of infi- 
nite capacity for holding packets prior to switching them to 
their respective outputs. Likewise each output has an infi- 
nite capacity buffer for holding packets that will be placed 
on the outgoing line. The buffer at an input is partitioned 
into N “virtual output queues” (VOQs), each of infinite 
capacity. The virtual output queue VOQj holds packets 
arriving at input i destined for output j. The queueing dis- 
cipline at each VOQ and at the output bufFer, which typ- 
ically determine the quality-of-service (QoS) that a flow 
obtains from the switch, can be entirely arbitrary and are 
not of concem in this note. 

A “scheduling cycle” consists of two parts: (a) the 
matching part, and (b) the switching part. During the 
matching part a matching algorithm, m, selects a match- 
ing between inputs and outputs in such a way that no input 
(respectively, output) may be matched to more than one 
output (respectively, input). During the switching part in- 
put i transfers a packet to output j if they are matched to 
each other and VOQij is non-empty. 

A matching may be represented by a permutation ma- 
trix r.  That is, input i is matched to output j if 7rij = l, 
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Fig. 1. A CIOQ sw'rch 

otherwise input i is not matched to output j. Let II be the 
set of all N! permutation matrices. 

The switch is said to have a speedup of s, where s E 
{ 1,. . . , N}, if during every time slot there are s schedul- 
ing cycles. We will also refer to each of the scheduling 
cycles in a time slot as a "phase". When the speedup s is 
bigger than 1, any packets that are transferred from an in- 
put i to an output j during a phase will be assumed to be 
transferred at the end of the phase. As mentioned earlier, 
when s > 1 buffers are required at the ouputs as well. This 
leads to the combined input- and output-queued (CIOQ) 
architecture. 

In addition to assuming that packets anive at the switch 
just at the b w n i n g  of a time slot, we shall also assume 
that packets depart from the switch just prior to the end of 
a time slot. 

Dt$nition 1: A matching algorithm m is a specification 
of a sequence of permutations {$(n + !)},.,e, where 
n;(n + i) indicates the event that input e' is matched to 
output j during phase k of time slot n. 

Let Ai j (n) denote the number packets that have arrived 
at input i destined for output j up to time slot n. S i c e  we 
assume that packet arrivaki occur at thebeginning of a time 
slot, for any time t E (n - 1, n), &j(n) is the cumulative 
number of pack.& that have arrived at VOQj by time t. 
We adopt the convention that Ajj(0) = 0. We assume 
thatthearrivalprocesses {&j ( - ) , i , j  = 1, ..., N) satisfy 
a strong law of large numbers (SLLN): with probability 
one, 

We call Xij  the arrival rate at VOQij. Assumption (1) on 
arrival processes is very mild. It is satisfied, for example, 
when the arrival {Aijc), i, j = 1,. . . , N) are 
jointly stationary and ergodic with atrival rates X i j .  

Let Dii(n) be the number of departures from VOQj (n) 

0-7803-5880-5/00/$10.00 ( c )  2000 lEEE 

up to time slot n. We also adopt the convention that 

Definition 2: A switch operating under a matching al- 
Dij (0) = 0. 

gorithm is said to be mfe stable if, with probability one, 

for any arrival processes satisfying (1). 
Definition 3: A matching algorithm is said to be efi- 

cient if (2) holds for any arrival processes satisfying (1) 
and 

i j 
Since, each output link can potentially transmit one packet 
in each time slot, 

n-m n 

is the long-run fraction of time that output link j is busy. A 
switch operating under an efficient matching algorithm can 
keep each output link 100% busy, equally the switch can 
achieve upto 100% throughput, if there is enough offered 
load 

Write Zij(n) for the number of packets in VOQj at the 
beginning of time slot n, including any packet that might 
have just arrived at time n - 1. 

111. STABILITY RESULTS 

In this section, we state the two major results of this pa- 
per. The first states that a maximum weight matching algo- 
rithm is efficient for a switch with speedup 1. The second 
states that any maximal matching algorithm is efficient for 
a switch with speedup s 2 2. 

A. Speedupofl 
When the switch speedup is 1 there is only one schedul- 

ing cycle and hence no more than one packet may be re- 
moved from each input or transferred to each output in 
one time slot. A packet that reaches its output at the end 
of a time slot will depart immediately from the switch, 
and hence there is no need for outjput buffers. Thus, at a 
speedup of 1, we are led to the input-queued architecture. 
For each permutation (or matching of inputs and outputs) 
K E II, let the "weight" under matching A equal 

f7rb) = (n, Z(n)), 

where for two matrices A and B of the same size, 
(A, B )  = Cij AsjBtj*  
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Definition 4: Under the maximum weight matching al- 
gorithm, w, 

7rW(n) = wF=7r{f7r(n)). (4) 

Let f (n)  = fTW(,)(n) be the weight of the maximum 
weight matching at time n. 
When there are multiple matchings that all have equal 
weight we choose one of these matchings arbitrarily to 
break the tie. 

We shall prove the following theorem in Section V. 
Theorem I :  A maximum weight matching algorithm is 

efficient. 

B. Speedup of 2 
Recall that for a switch with a speedup of 9 there are s 

scheduling cycles. 
Dejinition5: A matching algorithm x is said to be a 

" a 1  matching algorithm or a nonidling matching al- 
gorithm if for every phase k of every time n, Zij (n + i) > 
0 implies that at least one of the following holds: 
(1) Zij+ + S) xG,(n + 5 )  > 0 
(2) Zilj(n + 5)  ~ $ j ( n  + > 0, 
for some i', j' E { 1,. -. , N}. 

Thus under a maximal matching algorithm if input i has 
a packet for output j at the beginning of a scheduling cycle, 
then either (i) Input i is matched to output j, or (ii) Input 
i is matched to an output j' # j for which it has a packet, 
or (iii) Output j is matched to an input i' # i which has a 
packet for output j .  

The following theorem is proved in Section V. 
Theotem 2: Any maximal weight matching algorithm is 

efficient., so long as the speedup s 2 2. 

IV. FLUID MODELS 
We now introduce the fluid model of a switch. To do 

this, we first write down the equations that govern the (dis- 
crete) dynamics of a switch. We then write'down the cor- 
responding fluid model equations of the switch. 

A. Switch dynamics 
Suppose the switch employs some (yet to be specified) 

matching algorithm m. For a x E II, let T ( n )  be the 
cumulative amount of time that permutation 7~ has been 
used by time slot n. Again, we assume T ( 0 )  = 0. The 
following equations of evolution hold for the switch for 
n 2 Oandi,j  = 1 ,..-, N, 
zij (n) = 2, (0) 3- &j (n) - Dij (n), 

n 
DijW = c zxij 1{Zij(e)>o}(T(4 - TV - 1)), 

7r€n A?=l 

T,"(.) is non-dekreasing, and 

The first equation tracks the evolution of Zij in terms of 
the total number of arrivals at and departures from VOQii. 
The second equation keeps a count of the cumulative num- 
ber of departures from VOQij. And the third equation ex- 
presses the fact that input i is matched to some output or 
the other at each time. 

T,"(n) = n. 
%En 
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B. Fluid equations 
Now we describe a deterministic, continuous fluid mod- 

el of a switch operating under some matching algorithm 
m, with offered trafh satisfying (1). Let T(t) be the 
cumulative amount of time in [ O , t ]  that matching x was 
employed under the matching algorithm m. For i,j = 
1,. . . , N and for each t 2: 0, the fluid model is governed 
by the following set of equations: 

Zij(t) = Zij(O) + Xijt -. Dij(t) >_ 0, 
kij(t) = ~i,e(t), if Zjj(t) > 0, (6) 

( 5 )  

*€IT 

T(-) is nondecreasing, and T(t) = t ,  (7) 

where, for a function f, j ( t )  denotes the derivative off at 
t. We adopt the conventioqthat whenever symbol j ( t )  is 
used, f is assumed to a differentiable at t. 

Equations (347) are fluid model equations. Each so- 
lution (D, T, 2) to (5)-(7) is said to be a fluid model so- 
lution. One interprets Zij(t) as the buffer level at time t 
in VOQ, and Dij(t) the total mount of fluid departing 
from VOQj in [O, t]. Equation (5) is a basic flow equation. 
Equation (6) has an equivalent characterization: Whenever 
Zij(t) > 0, there exists a d > 0 such that 

U E I I  

TEII 

Equation (8) says that if the amount of fluid in VOQj is 
positive at time t, then, for small enough 6 > 0, the amount 
of fluid drained from VOQij in the interval [t, c [t,  t + 
s] equals the amount of time that input i and output j were 
matched to each other during [t, tl. 

Depending on the matching algorithm m used, often 
there are additional fluid model equations corresponding 
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to matching algorithm m. For example, if m equals w, the 
maximum weight matching algorithm, the additional fluid 
equation takes the form: for each n E U, 

e(t) = o if (n, ~ ( t ) )  < (n', ~ ( t ) )  for some d E n. 

The above equation says that under the maximum weight 
matching algorithm, a matching A which has weight less 
than another matching n-' at some time t will not be em- 
ployed at that time. Thus, equation (9) characterizes the 
maximum weight matching algorithm and is added to the 
basic fluid model equations (5)-(7) whenever we consid- 
er the fluid model of a switch employing the maximum 
weight matching algorithm. 

In general, deciding which equation can be added to a 
fluid model is related to fluid limits and is discussed in Sec- 
tion VI-A. 

Definition 6: The fluid model of a switch operating un- 
der a matching algorithm is said to be weakly stable if 
for every fluid model solution (0, T, 2) with Z(0)  = 0, 
Z ( t )  = 0 fort 2 0. 

Theon": A switch operating under a matching al- 
gorithm is rate stable if the corresponding fluid model is 
weakly stable. 
We defer the proof to the appendix. 

(9) 

v. PROOFS OF THEOREMS 1 AND 2 
In this section, we prove Theorems 1 and 2. In light 

of Theorem 3, it suffices to prove that, in each case, the 
corresponding fluid model is weakly stable. We first state 
the following simple lemma. 
km1: Let f : [O,oo) + [O,oo) be an absolute- 

ly continuous function with f(0) = 0. Assume that 
f(t) 5 0 for almost every t (wrt Lebesgue measure) such 
that f ( t )  > 0 and f is differentiable at t. Then f(t) = 0 
for almost every t 2 0. 

Pmofi For almost every t 2 0, f 2 ( t )  - f2(0) = 
2J:f(~)f(s) ds 5 0, since f (s)f(~)  5 0 ae. in [ O , t ] .  
Now f(0) = 0 and f(t) 2 0 imply that f ( t )  = 0 for 
almost every t. 

A. Proof of Theorem 1 
Let (D, T, 2) be a fluid model solution satisfying (5)- 

(7) and (9) with Z(0) = 0. For a permutation matrix T, 
define f*(t) = (n, Z(t)). Let f ( t )  = ma+ f&). Let X 
be the N x N matrix with entries Xij .  It is well-known 
that under condition (3) 

(A, Z ( t ) )  5 f ( t )  fort 2 0. 

Briefly, this is because under condition (3) A is doubly sub- 
stochastic and can therefore be written as a convex com- 
bination of permutation matrices, from which the above 
inequality follows. See Lemma 2 of [21] for details. 

Let t be a fixed value such that f and Z are differentiable 
at t. Let rI' be the set of matchings r such that f*(t) = 
f(t). Then we have f?r(t) = j ( t )  for n E U' (see, for 
example, the proof of Lemma 3.2 of [14]), and by (9), 

f*(t) = 1. 
*€TI' 

It follows that 

( z ( t ) , m  = (Z(t>, k * ( t ) )  I 

*€U' 

= ( W ) 7 7 f t r ( t ) )  

= f*(t)fm 

= f(t) 

= f(t)- 

( W 7  m) = (W), - (z ( t ) ,m)  

*€Is 

7rEF 

*€II' 

Thus, 

5 0. < 
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It follows that d ( ~ ( t ) ,  ~ ( t ) ) / d t  <_ o for any ~ ( t )  # 0. i 
Since Z(0) = 0, from Lemma 1 we have that the fluid 
model is weakly stable. 

B. Proof of Theotem 2 
Consider the fluid model of a switch having a speedup 

of 8, operating under a maximal matching algorithm. Let 
(D,T,Z)  be a fluid model solution with Z(0)  = 0. 

id queued at input i at time t. Similarly, let Mj(t )  = zit Zitj(t) be the total amount of fluid destined for out- 
put j and queued at some input at time t. Define Cjj(t) = ' 
Li(t) + Mj(t) .  In addition to the fluid model equations 
(5)-(7), under a maximal matching algorithm for a switch 
having a speedup of s, the fluid model solution satisfies the 
following additional equation: 

C i j ( t )  5 Xijt + &ij - s whenever & j ( t )  > 0. 

(10) 

Let Li(t) = & Zijl(t) denote the total mount of flu- 

i' i' 
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Equation (10) can be added to the fluid model because of 
the following lemma. 

kmmu2:  For switch with speedup of s operating un- 
der a maximal matching algorithm, each fluid limit must 
satisfy (10). 
We leave the proof to the appendix. We provide an intu- 
itive explanation here. Suppose that at the beginning of a 
time slot., the number of packets at VOQij is at least s. 
Then during each of the s scheduling cycles within the 
time slot, there is at least one packet at VOQij. There- 
fore, during a scheduling cycle, either (1) a packet moves 
from input i to an output j ‘ ,  or (2) a packet moves from an 
input i‘ to output j .  Hence Cij.reduces by at least s during 
a time slot due to departures. It increases by the number 
of packets that arrive at input i or for output j .  Hence the 
change in Cij (measured in the fluid model by its deriva- 
tive) is no more than the difference between the sum of the 
arrivals and the departures. 

Now we return to the proof of Theorem 2. Let Q be the 
N x N matrix with each entry being 1. One can check that 

C(t) = QZ( t )  + Z(t )Q t 2 0. (11) 

Define 

It follows that f(t) 2 0 for t 2 0 and f(0) = 0. It is also 
clear that f ( t )  = 0 implies that Z(t) = 0. We would like 
to show that f(t) > 0 implies i ( t )  5 0, from which and 
HRmma 1 the weak stability of the fluid model follows. We 

f(t) = W), C(t ) ) .  

claim (and will shortly prove) that 

Equivalently, 

f( t)  = 

Therefore, 

i j , k  i j , k  

i j , k  i j , k  

= 2 zij(t)C;j(t), 
ij 

which proves (12). 
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VI. APPENDIX 
In this appendix, we first introduce fluid limits, which 

will be used to prove Theorem 3. We then prove Lemma 2. 
The proof provides an exmple showing how one can add 
additional fluid model equations to a fluid model. 

A. Fluid limits 
In this section, we introduce fluid limits associated with 

a switch and prove that each fluid limit must be a fluid 

model solution to (5)-(7). 
Recall that Zjj (n) is the number of packets in VOQj at 

the beginning of time slot n. We extend the definition of 
Z&), for arbitrary time t I 0, to be Zij([t]) ,  where [tJ 
is the largest integer less than or equal to t. Then Zij(.) E 
WO, oo), where, for an integer d, @[O, 00) is the space 
of functions f : [O,oo) + @ that are right continuous 
and have left limits in (0,m). Similarly, we can extend 
the definition of A(t)  so that it is defined for t >_ 0. Note 
that the functions Aij (.) and Zij (-) are random elements 
of D[O , a), in general. 

For purely technical reasons (which will soon become 
apparent), we wish to define D(t)  and T,(t) for t 2 0 so 
that they are continuous functions. This merely involves 
making the following piecewise linear interpolation: For 
t E (n, n+l), let D(t)  = D(n)+(t-n)(D(n+l)-D(n)) 
and let T,(t) = T,(n) + (t - n)(T,(n + 1) - T‘(n)). 

Note that the functions Di, (t) and ?!, (t) are random el- 
ements of @IO, m). We shall sometimes use the notation 
A(., w),  D(., w),  T,(-, w )  and Z(., w )  to explicitly denote 1 
the &pendency on the randomness w. 

For a switch with a speedup of s and for a fixed random- 
ness w, we have 

Dij ( t+ t ‘ ,w)  -D; j ( t ’ ,w)  I t s ,  t , t ’ 2 0 ,  (13) 
T,(t + t ‘ , ~ )  - Tr(t‘ ,~)  5 t ,  (14) t ,  t‘ 2 0. 

It should be clear to the reader that D(t)  and T,(t) were 
defined to be continuous in order to obtain the above uni- 
form continuity properties. 
Now, for each r > 0 define 

Ar(t,w) = r-’A(rt,w), 
b‘(t, 0) = r-‘D(rt, U), 
P(t, w )  = r-‘T(rt, w),  
F(t, 0) = F l Z ( r t ,  U). 

It follows h m  (13) and (14) that 
* -  

q j ( t )  - D&(t‘j 5 s(t - t‘), q ( t )  - c(e) 5 (t  - e), 
(15) 

for any r > 0 and t 2 t‘ 2 0. Recall that a se- 
quence of functions fa(.) is said to converge to j ( . )  u- 
niformly on compact (u.o.c.) intervals if, for every t 2 0, 
supO<e<t Ifn(t‘) - f ( t ‘ ) l+ 0 as n + 00. By the Arzela- 
Ascos fieorem (see, e.g., Billingsley [2], pp 221), for a 
fixed w, the family { ( D ( - , w ) , P ( - , w ) ) , r  > 0) is tight, 
as r + 00, in the space of continuous functions endowed 
with U.O.C. topology. That is, for each sequence {rn}, 
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thert: exists a subsequence ( rnk}  and a continuous func- B. PmofofZkorem 3 

Assume that the fluid model is weakly stable. Recall tion (b ( - ) , p ( - ) )  such that, for any t 2 0, 

(16) (Definition 6) that this means Zij(0) = 0 and Z,(t) = 0 
for t > 0. By Section VI-A, for each w satisfying (l), 

(17) {D'(-, U), r > 0) is tight as r + 00, and the fluid limit 
(b, 2) is uniquely given by & j ( t )  = 0 for t 2 0. Using 
this in (51, we get that Djj(t) = Xj j t  for t 2 0. 

SUP lDij -rnk (t'w) ' - D..(t')l y = 0, 
k-mo osr_<t 
lim SUP lT:k(t', U) - Tr(f)l = 0. 

k - + w  o<rg 
Note that 

U.O.C. as r + 00. In particular, bb( I, w )  + A i j  as r 3 00 
or 

for all w satisfying the SLLN assumption (1). Combin- 
ing (16) and (18), we have that, for each randomness w 
satisfying (1) and any sequence {r,} with r, + 00 as 
n + 00, there exists a subsequence {rnk} and function 
(D(-),p(-), Z(-)) such that 

= xj j .  
Lim Dij(r, w )  

r - m  r 
Restricting P to the integers on the left hand side yields (2), 
thus proving the theorem. 

C. Proof of Lemma 2 (19) 
U.O.C. as k -+ 00. 

Definition 7: Any function @(e), T(.)Z(.)) obtained via the fluid limit procedure. 
through the limiting procedure in (19) is said to be ajlukf 

(In (a, w), 5T-k (., w ) ,  2% (a, U)) -+ @(a), q.), Z ( . ) )  

We prove the following lemma, which implies Lemma 2 

Lemma 3: A switch employing a maximal matching al- 
limit of the switch. 
One can check that each fluid limit (D, p, Z), obtained 
from (19), satisfies the fluid model equation (5). Since 
P ( 0 , w )  = r-lZ(0, w) + 0 as r -P 00, one must have 
Z(0) = 0. We now check that the fluid Limit also satisfies 
the fluid model equation (6). As discussed in Section IV- 
B, it is enough to check that the fluid limit satisfies (8). 
Consider a VOQjj and a time t 2 0. Suppose that Zij ( t )  > 
0. By the continuity of 2, there exists a 6 > 0 such that 
&rqt,t+q > 0. Set a = &qt,t+q Zij(t')* 
Thus, for large enough k, we have 

ggy (t') 2 a/2 fort' E [t, t + s] and rnka/2 2 1. 
Thus, 

Zij(t') >_ 1 for t' E [rnkt, rnk(t + a)]. (20) 

Equation (20) says that, for a large time interval 
[rnkt,rnk(t + S ) ] ,  the VOQj has at least one packet in 
it. We have, for each t' E [t, t + 4, 

0 4 Dij(rn,t) - Dij(Fnkt) 

- T j j  (T!(rnk') - TT(rnkt)) 5 '. 
%En 

Pmof Let vl,. denote the set of all VOQs hold- 
ing packets at input i or for output j .  Then Cij(n + 
1) - Cij(n) is the difference in the number of ar- 
rivals at time n + 1 to qj and the number of depar- 
tures from V;, at time n. The number of arrivals to 
V& at time n + 1 equals (Ejf Ajt (n + 1) - Aiy(n)) 

Since Zjj(n) 2 s and at most one packet may be re- 
moved f" input i in each phase of the nth time slot, 
&j(n + a) > 0 for 1 <,k < s. As the switch employs a 
maximal matching algorithm, 

+ (& A& + 1) - A&)). 

k k + zifj(n + ;)7r$(n + -) 9 > 0 

Dividing each si& by rnk and letting k + 00, one has (8). 
Finally, because of (15), each fluid Limit (D, p, z) is 

Lipschitz continuous and therefore is absolutely continu- 
OW. 

for some j' # j and i' # i. 
Therefore, during each phase k of time n, either input 

i transfers a packet to some output or output j receives a 
packet from some input. In either case, at least one packet 
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is removed from a VOQ in the set qj during each phase of 
time n. Since there are 8 phases, the number of departures 
h m  Vij is at least s and we get the bound on the right- 
hand-side of (21). 
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