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Abstract-We investigate the problem of providing a fair bandwidth allo- 
cation to each of n flows that share the outgoing link of a congested router. 
The buffer at the outgoing link i s  a simple FIFO, shared by packets be- 
longing to the n flows. We devise a simple packet dropping scheme, called 
CHOKe, that discriminates against the Rows which submit more pack- 
ets/sec than is allowed by their fair share. By doing this, the scheme aims to 
approximate the fair queueing policy. Sice it is stateless and easy to imple- 
ment, CHOKe controls unresponsive or misbehaving flows with a minimum 
overhead’. 

Keyworh- fair queueing, RED, active queue management, scheduling 
algorithm. 

I. INTRODUCTION 
The Internet provides a connectionless, best effort, end-to- 

end packet service using the IF’ protocol. It depends on conges- 
tion avoidance mechanisms implemented in the transport layer 
protocols, like TCP, to provide good service under heavy load. 
However, a lot of TCP implementations do not include the con- 
gestion avoidance mechanism either deliberately or by accident. 
Moreover, there are a growing number of UDP-based applica- 
tions running in the Internet, such as packet voice and packet 
video. The flows of these applications do not back off prop- 
erly when they receive congestion indications. As a result, they 
aggressively use up more bandwidth than other TCP compati- 
ble flows. This could eventually cause “Internet Meltdown” [2]. 
Therefore, it is necessary to have router mechanisms to shield 
responsive flows from unresponsive or aggressive flows and to 
provide a good quality of service (QoS) to all users. 

As discussed in [2], there are two types of router algorithms 
for achieving congestion control, broadly classified under the 
monikers “scheduling algorithms” and “queue management al- 
gorithms”. The generic scheduling algorithm, exemplified by 
the well-known Fair Queueing (FQ) algorithm, requires the 
buffer at each output of a router to be partitioned into separate 
queues each of which will buffer the packets of one of the flows 
[3]. Packets from the flow buffers are placed on the outgoing 
line by a scheduler using an approximate bit-by-bit, round-robin 
discipline. Because of per flow queueing, packets belonging to 
different flows are essentially isolated from each other and one 
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flow cannot degrade the quality of another. However, it is well- 
known that this approach requires complicated per flow state 
information, making it too expensive to be widely deployed. 

To reduce the cost of maintaining flow state information, Sto- 
ica et a1 [16] have recently proposed a scheduling algorithm 
called Core Stateless Fair Queueing (CSFQ). In this method 
routers are divided into two categories: edge routers and core 
routers. An edge router keeps per flow state information and 
estimates each flow’s arrival rate. These estimates are inserted 
into the packet headers and passed on to the core routers. A 
core router simply maintains a stateless FIFO queue and, dur- 
ing periods of congestion, drops a packet randomly based on 
the rate estimates. This scheme reduces the core router’s design 
complexity. However, the edge router’s design is still compli- 
cated. Also, because of the rate information in the header, the 
core routers have to extract packet information differently from 
traditional routers. Another notable scheme which aims to ap- 
proximate FQ at a smaller implementation cost is Stochastic Fair 
Queueing (SFQ) proposed by McKenny [13]. SFQ classifies 
packets into a smaller number of queues than FQ using a hash 
function. AIthough this reduces FQ’s design complexity, SFQ 
still requires around 1000 to 2000 queues in a typical router to 
approach FQ’s performance [ 121. 

Thus, scheduling algorithms can provide a fair bandwidth al- 
location, but they are often too complex for high-speed imple- 
mentations and do not scale well to a large number of users. On 
the other hand, queue management algorithms have had a sim- 
ple design from the outset. Given their simplicity, the hope is 
to approximate fairness. This class of algorithms is exemplified 
by Random Early Detection (RED) [5 ] .  A router implementing 
RED maintains a single FIFO to be shared by all the flows, and 
drops an arriving packet at random during periods of conges- 
tion. The drop probability increases with the level of conges- 
tion. Since RED acts in anticipation of congestion, it does not 
suffer from the “lock out” and “full queue” problems [2] inher- 
ent in the widely deployed Drop Tail mechanism. By keeping 
the average queue-size small, RED reduces the delays experi- 
enced by most flows. However, like Drop Tail, RED is unable to 
penalize unresponsive flows. This is because the percentage of 
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packets dropped from each flow over a period of time is almost 
the same. Consequently, misbehaving traffic can take up a large 
percentage of the link bandwidth and starve out TCP friendly 
flows. 

To improve RED’S ability for distinguishing unresponsive 
users, a few variants (like RED with penalty box [6] and Flow 
Random Early Drop (FRED) [l 13) have been proposed. How- 
ever, these variants incur extra implementation overhead since 
they need to collect certain types of state information. RED with 
penalty box stores information about unfriendly flows while 
FRED needs information about active connections. The re- 
cent paper by Ott et al [I41 proposes an interesting algorithm 
called Stabilized RED (SRED) which stabilizes the occupancy 
of the FIFO buffer, independently of the number of active Rows. 
More interestingly, S E D  estimates the number of active con- 
nections and finds candidates for misbehaving flows. It does this 
by maintaining a data structure, called the “Zombie list”, which 
serves as a proxy for information about recently seen flows. Al- 
though SRED identifies misbehaving flows, it does not propose 
a simple router mechanism for penalizing misbehaving flows. 
The CHOKe algorithm proposed below simultaneously identi- 
fies and penalizes misbehaving flows, and is simpler to imple- 
ment than SRED. 

In summary, all of the router algorithms (scheduling and 
queue management) developed thus far have been either able to 
provide fairness or simple to implement, but not both simultane- 
ously. This has led to the belief that the two goals are somewhat 
incompatible (see [17]). 

This paper takes a step in the direction of bridging fairness 
and simplicity. Specifically, we exhibit an active queue man- 
agement algorithm, called CHOKe, that is simple to implement 
(since rt requires no state information) and differentially penal- 
izes misbehaving flows by dropping more of their packets. By 
doing this, CHOKe (CHOose and Keep for responsive flows, 
CHOose and Kill for unresponsive flows) aims to approximate 
max-min fairness for the flows that pass through a congested 
route?. 

The basic idea behind CHOKe is that the contents of the FIFO 
buffer form a “sufficient statistic” about the incoming traffic and 
can be used in a simple fashion to penalize misbehaving flows. 
When a packet arrives at a congested router, CHOKe draws a 
packet at random from the FIFO buffer and compares it with the 
arriving packet. If they both belong to the same flow, then they 
are both dropped, else the randomly chosen packet is left intact 
and the arriving packet is admitted into the buffer with a proba- 
bility that depends on the level of congestion (this probability is 
computed exactly as in RED). The reason for doing this is that 
the FIFO buffer is more likely to have packets belonging to a 
misbehaving flow and hence these packets are more likely to be 
chosen for comparison. Further, packets belonging to a misbe- 

*Note that we implicitly assume that the statishcal characteristics and QoS 
requirements of each of the flows are identical. There is no loss of generality 
in making this assumption, since the paradigm of Class Based Queueing, e.g. 
as propored in [4], allows one to extend the basic CHOKe scheme to a network 
consisting of heterogeneous flows. 

having Row arrive more numerously and are more likely to trig- 
ger comparisons, The intersection of these two high probability 
events is precisely the event that packets belonging to misbehav- 
ing flows are dropped. Therefore, packets of misbehaving flows 
are dropped more often than packets of well-behaved flows3. 

The rest of the paper is organized as follows: Section 2 ex- 
plains our motivation and goals for using the CHOKe mecha- 
nism and describes the CHOKe algorithm (and a few variants) 
in detail. The simulation results are presented in Section 3. In 
Section 4, we propose and analyze models for the CHOKe algo- 
rithm. Our conclusions are presented in Section 5. 

11. MOTIVATION, GOALS, AND THE ALGORITHM 
Our work is motivated by the need for a simple, stateless al- 

gorithm that can achieve flow isolation and/or approximate fair 
bandwidth allocation. As mentioned in the introduction, exist- 
ing algorithms (like RED, FQ and others) are either simple to 
implement or able to achieve flow isolation, but not both simul- 
taneously. 

We seek a solution to the above problem in the context of the 
Internet. Thus, we are motivated to find schemes that differen- 
tially penalize “unfriendly” or “unresponsive” Rows4, which im- 
plies bad implementations of TCP, and UDP-based Rows. Fur- 
ther, we seek to preserve some key features that RED possesses; 
such as its ability to avoid global synchronization5, its ability 
to keep buffer occupancies small and ensure low delays, and its 
lack of bias against bursty traffic. By doing this, in the absence 
of unfriendly or unresponsive flows our algorithm will perform 
similarly to RED. 

Next, we need a benchmark to compare the extent of fairness 
achieved by our solution. Maxmin fairness suggests itself as 
a natural candidate for two reasons: (a) It is well-defined and 
widely understood in the context of computer networks (see [ 11, 
page 526, or [IO]), and (b) the FQ algorithm is known to achieve 
it. However, for any scheme to achieve perfect maxmin fair- 
ness without flow state information seems almost impossible. 
Maxmin fairness is not suitable in our context since we do not 
identify the flow(s) with the minimum resource allocation and 
maximize its (their) allocation. Instead we identify and reduce 
the allocation of the flows which consume the most resources. 
In other words, we attempt to minimize the resource consuinp- 
tion of the maximum flow or seek to achieve minmax fairness6. 
The resource freed up as a result of minimizing the maximum 
flow’s consumption is distributed among the other flows. In the 
Internet context the former flows are either unfriendly TCP or 
UDP, and the latter flows are TCP. 

3T0 our knowledge, the only other algorithm that makes a random comparison 
to identify misbehaving flows is SRED. The idea of making a random compari- 
son, observed independently by us, is dxectiy taken advantage of in CHOKe (i.e. 
without maintaining state information) to differentially drop packets belonging 
to misbehaving flows. 

4see [71 for a formal definition of these terms 
6Global synchronization refers to the situation where a lot of connections de- 

crease or increase their window size at the same time, as happens under the Drop 
Tail mechanism (cf. IS]). 

6Although we have not formally defined minmax fairness and don’t explicitly 
invoke it, our meaning should be clear to the reader. 
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Fig. 1. The CHOKe algorithm 

A. The CHOKe algorithm 

Suppose that a router maintains a single FIFO buffer for 
queueing the packets of all the flows that share an outgoing link. 
We describe an algorithm, CHOKe, that differentially penalizes 
unresponsive and unfriendly flows. The state, taken to be the 
number of active flows and the flow ID of each of the packets, is 
assumed to be unknown to the algorithm. The only observable 
for the algorithm is the total occupancy of the buffer. 

CHOKe calculates the average occupancy of the FIFO buffer 
using an exponential moving average, just as RED does. It also 
marks two thresholds on the buffer, a minimum threshold minth 
and a maximum threshold maxth. 

If the average queue size is less than minth, every arriving 
packet is queued into the FIFO buffer. If the aggregated arrival 
rate is smaller than the output link capacity, the average queue 
size should not build up to minth very often and packets are 
not dropped frequently. If the average queue size is greater than 
maxth, every arriving packet is dropp.ed. This moves the queue 
occupancy back to below maxth. When the average queue size 
is bigger than mznth, each arriving packet is compared with a 
randomly selected packet, called drop candidate packet, from 
the FIFO buffer. If they have the same flow ID, they are both 
dropped. Otherwise, the randomly chosen packet is kept in the 
buffer (in the same position as before) and the arriving packet 
is dropped with a probability that depends on the average queue 
size. The drop probability is computed exactly as in RED. In 
particular, this means that packets are dropped with probability 
1 if they arrive when the average queue size exceeds muxth. 
A flow chart of the algorithm is given in Figure 1. In order to 
bring the queue occupancy back to below muxth as fast as pos- 
sible, we still compare and drop packets from the queue when 
the queue size is above the maxth. 

In general, one can choose m > 1 packets from the buffer, 
compare all of them with the incoming packet, and drop the 
packets that have the same flow ID as the incoming packet. Not 
surprisingly, we shall find that choosing more than one drop can- 
didate packet improves CHOKe’s performance. This is espe- 
cially true when there are multiple unresponsive flows; indeed, 

as the number of unresponsive flows increases, it is necessary 
to choose more drop candidate packets. However, since we in- 
sist on a completely stateless design, wt  cannot a priori know 
how many unresponsive flows are active at any time (and then 
choose a suitable value form). It turns out that we can automate 
the process so that the algorithm chooses the proper value of 
m 2 1. One way of achieving this is to introduce an intermedi- 
ate threshold intth which partitions the interval between mznth 
and muxth into two regions. When the average buffer occu- 
pancy is between minth and intth the algorithm can set m =. 1 
and when the average buffer occupancy is between intth and 
muxth it sets m = 2.’ More generally, we can introduce mul- 
tiple thresholds which partition the interval between minth and 
maxth into k regions R I ,  Rz, . . . , R k  and choose different val- 
ues of m depending on the region the average buffer occupancy 
falls in. For example, we could choose m = 2 .  i (i = 1 . . . , I C ) ,  
when the average queue size lies in region Ri. Obviously, we 
need to let m increase monotonically with the average queue 
size. 

CHOKe is a truly stateless algorithm. It does not require any 
special data structure. Compared to a pure FIFO queue, there 
are just a few simple extra operations that CHOKe needs to per- 
form: draw a packet randomly from $e queue, compare flow 
IDS, and possibly drop both the incoming and the candidate 
packets. Since CHOKe is embedded in RED, it inherits the good 
features of RED mentioned previously. Finally, as a stateless al- 
gorithm, it’s nearly as simple to implement as RED. To see this, 
let us consider the details of implementation. Drawing a packet 
at random can be implemented by generating a random address 
from which a packet flow ID is read out. Flow ID comparison 
can be done easily in hardware. It is arguably more difficult 
to drop a randomly chosen packet since this means removing it 
from a linked-list. Instead of doing this, we propose to add one 
extra bit to the packet header. The bit is set to one if the drop 
candidate is to be dropped. When a packet advances to the head 
of the FIFO buffer, the status of this bit determines whether it is 
to be immediately discarded or transmitted on the outgoing line. 

-Q 

111. SIMULATION RESULTS 
This section presents simulation results of CHOKe’s perfor- 

mance in penalizing misbehaving flows and thus approximating 
fair bandwidth allocation. We shall use the RED and Drop Tail 
schemes, whose complexities are close to that of CHOKe, for 
comparison. The simulations range over a spectrum of network 
configurations and traffic mixes. The results are presented in 
three parts: single congested link, multiple congested links, and 
multiple misbehaving flows. 

A. Single Congested Link 

To illustrate CHOKe’s performance when there is a single 
congested link, we consider the standard network configuration 
shown in Figure 2. The congested link in this network is be- 

‘When the buffer occupancy exceeds m a q h  we start dropping each incom- 
ing packet but m remains the same. 
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tween the routers R1 and R2. The link, with capacity of 1 Mbps, 
is shared by m TCP and n UDP flows. An end host is con- 
nected to the routers using a 10 Mbps link, which is ten times 
the bottleneck link bandwidth. All links have a small propaga- 
tion delay of lms so that the delay experienced by a packet is 
mainly caused by the buffer delay rather than the transmission 
delay. 'l'he maximum window size of TCP is set to 300 such that 
it doesn't become a limiting factor of a flow's throughput. The 
TCP flows are derived from FTP sessions which transmit large 
sized files. The UDP hosts send packets at a constant bit rate 
(CBR) of T Kbps, where T is a variable. All packets are set to 
have a size of 1K Bytes. 

To study how much bandwidth a single nonadaptive UDP 
source can obtain when routers use different queue management 
schemes, we set up the following simulation: there are 32 TCP 
sources (Flow1 to Flow32) and 1 UDP source (Flou33)  in the 
network. The UDP source sends packets at a rate T = 2 Mbps, 
twice the bandwidth of the bottleneck link, such that the link 
Rl-R2 becomes congested. The minimum threshold manth in 
the RED and CHOKe schemes is set to 100, allowing on aver- 
age around 3 packets per flow in the buffer before a router starts 
dropping packets. Following [5 ] ,  we set the maximum thresh- 
old mmth to be twice the ?ninth, and the physical queue size is 

fixed at 300 packets. The throughput of the UDP flow under dif- 
ferent router algorithms: DropTail, RED and CHOKe, is plotted 
in Figure 3. 

From Figure 3, we can clearly see that the RED and DropTail 
gateways do not discriminate against unresponsive flows. The 
UDP flow takes away more than 95% of the bottleneck link ca- 
pacity and the TCP connections can only take the remaining 50 
Kbps. CHOKe, on the other hand, improves the throughput of 
the TCP flows dramatically by limiting the UDP throughput to 
250 Kbps, which is only around 25% of the link capacity. The 
total TCP flows' throughput is boosted from 50 Kbps to 750 
Kbps. 

To gauge the degree to which CHOKe achieves fair band- 
width allocation, the individual throughput of each of the 33 
connections in the simulation above, along with their ideal fair 
shares, are plotted in Figure 4. Although the throughput of the 
UDP flow (FZm33) is still higher than the rest of the TCP flows, 
it can be seen that each TCP is allocated a bandwidth relatively 
close to its fair share. In CHOKe, a packet could be dropped 
because of a match or a random discard like in RED. A mis- 
behaving flow, which has a high arrival rate and a high buffer 
occupancy, incurs packet dropping mostly due to matches. On 
the other hand, the packets of a responsive flow are hard to be 
matched, and therefore get dropped mainly because of random 
discard. In the above simulation, we find that matches are re- 
sponsible for 85% of the UDP packet dropping, while 70% of 
the TCP packets dropping are caused by random discard. 

We vary the UDP arrival rate T to study CHOKe's perfor- 
mance under different traffic load conditions. The simulation 
results are summarized in Figure 5, where the UDP's throughput 
versus the UDP flow arrival rate is plotted. The drop percentage 
of the UDP flow is also shown in the figure. The ?ninth and the 
maxth are set to 30 and 60 packets in this case to show that the 
CHOKe scheme works under different threshold settings. From 
the plot, we can see that CHOKe drops 23% of the UDP packets 
when its arrival rate is as low as 100 Kbps. As the UDP arrival 
rate increases, the drop percentage goes up as well. It drops al- 
most all of the packets (98.3%) when the arrival rate reaches 10 
Mbps. The average TCP flow's throughput stays almost con- 
stant. In comparison, RED'S performance under different traffic 
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load is shown in Figure 5 as well. It is obvious that RED can't 
provide protection against greedy connections. The unrespon- 
sive flows use up all the network bandwidth and starve out the 
well-behaving flows. When the average queue size goes above 
the maw, and all the arrival packets are dropped, RED becomes 
a Drop Tail scheme. 

Figure 6 shows the queue distribution among the flows for 
different traffic load conditions. It is not surprising that CHOKe 
can control the average queue size as RED does since it imitates 
RED on this sense. When the UDP arrival rate is 100 Kbps, 
only a few times the rate of a single TCP flow, CHOKe is able 
to detect this small difference and drops 23% of the UDP traffic. 
When the UDP arrival rate goes up, its share of the queue occu- 
pation increases. Therefore, it becomes easier to catch a UDP 
flow packet as a drop candidate. Besides, with the increasing 
arrival rate, the UDP flow triggers more comparisons. As a re- 
sult, the probability of obtaining a match UDP packet increases. 
Associated with each matching, there are two packets that get 
dropped: the incoming one and the one from the queue. So when 
the probability of matching approaches 0.5, for each incoming 
UDP packet, there is on average 0.5 . O  + 0.5 . 2  = 1 packet that 
is being dropped; i.e. the proportion of dropped UDP packets 
approaches 1 and of the UDP flow's goodput goes to zero. This 
intuitively explains why the UDP throughput goes down under 
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ROW 0 to 9 WOW 0 tO 4 Flow 15 to 24 
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0 UDPWowSource Q UDPPIowSink 

Fig. 7. Topology of Multiple Link. 
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EACH FLOW'S THROUGHPUT AT DIFFERENT LINKS 

(TR~-R~=THROUGHPUT AT LINK RI-RI) 

heavy load and why the average queue size of the UDP flow 
doesn't even become the dominant portion of the queue usage. 
The detailed discussions will be covered in Section IV. 

B. Multiple Congested Links 
So far we have seen the performance of CHOKe in a sim- 

ple network configuration with one congested link. In this sec- 
tion, we study how CHOKe performs when there are multiple 
congested links in the network. A sample network configura- 
tion with five routers is constructed as shown in Figure 7. The 
first link between router RI and R2 (Rl-R2) has a capacity of 
10 Mbps so that when the sources connected to it send pack- 
ets at high rate, the following link R2-R3 becomes congested. 
The third link, R3-R4, has only half the bandwidth of the link 
R2-R3and becomes congested since the link's arrival rate ex- 
ceeds its capacity. The final link R4-R5 is lightly loaded. Using 
these links, we can demonstrate CHOKe's performance under 
cascaded, multiple congested links. In total there are 25 TCP 
flows and 1 UDP flow in the network, whose sources and sinks 
are shown in the figure. The UDP source sends packets at a rate 
of 2 Mbps while the other network parameters remain the same 
with Figure 5 .  
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Table I lists the throughput of each flow at various links in the 
network. We see that after competing with 25 TCP flows in the 
first congested link R2-R3, the UDP flow loses around 63% of 
its traflic when it sends data at the same rate as the link band- 
width (2 Mbps). The UDP traffic that gets through to the next 
link, R3-R4, constitutes 74% of the arrival rate at that link. The 
flow suffers an additional 55% loss at this link when compet- 
ing with the remaining 20 TCP flows. Comparing these results 
with the single congested link case, we can see that each of the 
cascaded congested links behaves roughly as if it was a single 
congested link. Multiple congested links therefore have a mul- 
tiplicative effect on UDP packet losses. Since TCP flows can 
automatically detect their bottleneck link bandwidth, they suffer 
much lzss loss. 

iFrom the simulation results in Table I and the discussion 
above, one infers that since TCP flows are responsive to con- 
gestion indication and adjust their packet injection rates accord- 
ingly, their packet loss rate in a network under the CHOKe 
scheme is quite small. But nonadaptive flows, like UDP, suf- 
fer from severe packet losses. 

C. Multiple Misbehaving Flows 
We now study the effect of the generalized CHOKe algorithm 

where more than one drop candidate is drawn from the buffer. 
Figure 8 shows the performance of the CHOKe algorithm with 
one, two and three drop candidates. The network configuration 
for the simulation is the same as the one in Figure 2. The rate 
for the UDP source is 2 Mbps. Since CHOKe with m - 1 can- 
didates has a maximum drop of m packets (m - 1 candidate 
packet:; +l incoming packet), it will be referred to as CHOKe 
with drop m. (Under this terminology the basic CHOKe scheme 
will be referred to as CHOKe with drop 2.) Figure 8 shows that 
CHOKe with multiple drops has a better control over the unre- 
sponsive UDP traffic than the basic CHOKe algorithm, which is 
not surprising’. 

When there are many UDP flows in the network, CHOKe with 
multiple drops exhibits its advantage over the basic algorithm. A 

*It is interesting to observe that the performance improvement from CHOKe 
drop 3 t o  CHOKe drop 4 is very small. 

Pig. 10. Self Adjusting CHOKe: Throughput for 32 TCP and 5 UDP configu- 
ration 

simulation configuration with 32 TCP and 5 UDP sources is set 
up, using the basic network topology shown in Figure 2. All 
the UDP sources are assumed to have the same arrival rate. The 
minth and maxth are still set up to be 30 and 60 packets. The 
simulation results for the basic CHOKe algorithm are given in 
Figure 9. As shown in the figure, the throughput of the UDP 
sources goes up monotonically with their arrival rate. As a re- 
sult, there is almost no bandwidth left for the TCP sources. Al- 
though the total UDP flows occupy almost all the buffer space, 
each UDP connection takes only around 20% of the queue. As 
a result, the chance of catching a right victim is low and UDP 
flows can’t be regulated as desired. 

On the other hand, CHOKe with 5 drops boosts the through- 
put of the TCP flows in this situation, as shown in Figure 9. Be- 
cause multiple drop candidates are selected from the queue, the 
chance of catching the bad flows increases. Therefore, CHOKe 
with multiple drops can penalize those flows that are hard to 
detect but use more than their fair share of network bandwidth. 

The above simulation illustrates the need for multiple drops 
when there are multiple unresponsive flows. Since the average 
queue size is a goad indication of congestion level, we use it to 
automatically decide on the appropriate number of drops. The 
scheme works as follows: the region between manth and maxth 
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is divided into k subregions and the number of drops in a region 
is set to 2 i (i = 1 . . . k). The simulation results, plotted in 
Figure 10, clearly show that this self adjusting mechanism works 
well in case of multiple unresponsive flows. 

Iv. MODELING AND ANALYSIS OF THE ALGORITHM 

This section develops some mathematical models for analyz- 
ing the CHOKe algorithm. We distinguish among the following 
three versions of CHOKe: 
Original CHOKe, in which the drop candidate packet is cho- 

sen randomly from the queue. 
Front CHOKe, in which the drop candidate is always the 

packet at the head of the queue. 
Back CHOKe, in which the drop candidate is always the 

packet at the tail of the queue. 
The last two variations are introduced because of the difficulty 
of analyzing the original CHOKe. For both the front and back 
CHOKe simple models are presented, that are analyzable, and 
are reasonable approximations of the actual scheme. In the next 
two sections we use queues with Poisson arrivals and exponen- 
tial services although this is unrealistic. Other than tractability, 
these models allow us to gain some simple insights. We discuss 
the suitability and the implications of these models for realistic 
scenarios in Section IV-C. 

A. Front CHOKe 
Consider a queue with N independent Poisson arrivals, each 

of rate Xi ,  and independent exponential service times. The 
queueing discipline is first-in-first-out (FIFO) and the mean ser- 
vice time of each packet is assumed to be l /p .  To ease the 
exposition, let us first consider only two arrival processes with 
arrival rates XI and X2. We shall refer to the packets of these 
flows as type 1 and type 2 packets, respectively. 

An arriving packet is either admitted to the queue or dropped 
upon arrival depending on the outcome of certain comparisons, 
as explained next. Each arriving packet is compared with the 
packet at the head of the queue (if the queue is nonempty). If the 
types of both packets are the same, then they are both dropped. 
Else, the arriving packet is admitted to the queue. Of course, 
if a packet arrives at an empty queue, then it is automatically 
admitted. We assume that the,queue has an infinite waiting room 
and that packets can only be dropped either when they arrive or 
when they are at the head of the queue. For now let us also 
suppose that A1 + A2 < 1.1 so that the queue is stable. We shall 
later see that with the dropping scheme in place the queue will be 
stable for all values of X I ,  A2 and p. The assumption of stability 
guarantees that an equilibrium distribution exists for the queue- 
size process. 

Write pl,,l (respectively, ~ 2 , ~ ~ )  for the probability that an ar- 
riving packet of type 1 sees a type 1 (respectively, type 2) packet 
at the head of the queue. Let p ~ , , ~  be the probability that an 
arriving type 1 packet sees an empty queue. The well-known 
PASTA9 property [18] asserts that pi, , ,  = pi for i = 0, I, 2, 

gPASTA: Poisson Arrivals See Time Averages 

Fig. 1 1. Front CHOKe model 

where the pi are the corresponding equilibrium probabilities as 
seen at an arbitrary instant of time. Since we have assumed that 
both the arrival processes are Poisson and independent, the same 
reasoning gives that the probability, pi,az, that an arriving type 2 
packet sees a type i packet at the head of the queue also equals 
p i ,  for i = 1,2  and the propapility that it sees an empty queue 
also equals PO. 

Given that the services are i.i.d. and exponential of rate l /p ,  
we can represent the service process by an independent Poisson 
process of rate p. Thus, service tokens arrive according to a 
rate p Poisson process and will liberate the packet at the head 
of the queue (whatever its type), so long as the queue is non- 
empty. If the queue is empty when a service token arrives, then, 
of course, the service token is wasted. Write p i , s ,  i = 1,2,  for 
the probability that a service token sees a type i packet at the 
head of the queue. And let ~ 0 , ~  be the probability that a service 
token arrives at an empty queue. Applying the PASTA property 
again, we see that pi,8 also equals pi  fori  = 0,1,2. 

We summarize these observations as follows: pi,al = = 
pi,$ = pi fori = 0 ,1 ,2 .  Of course, PO + p1 + p2 = 1. 

We now use a rate conservation argument to evaluate the p i .  
Consider just type 1 packets. The rate at which these packets 
arrive is X I .  A proportion p l  of these packets is dropped at ar- 
rival. A further proportion p l  will be dropped from the head of 
the queue. (We note in passing that packets are always dropped 
in pairs.) Therefore, the rate of departure of type 1 packets from 
the queue is A1 (1 - 2 p l ) .  But to each type 1 packet that leaves 
the queue there corresponds a service token that liberated it. 
Since service tokens arrive at rate p and a proportion p l  of them 
liberate type 1 packets, the rate at which service tokens cause 
type 1 departures is pp1 (see Figure 11). 

The requisite rate conservation equation is therefore A1 (1 - 
2 p l )  = p p l .  Solving for pl we obtain that 

A1 
p + 2x1 

Pl = - 

Similarly, 
A2 

P2 = - 
lL + 2x2. 

The form of these probabilities is somewhat surprising: they 
do not depend on the arrival rate (or, indeed, the number) of 
other incoming flows. Since ppi is the departure rate of type 
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i packets, this in turn implies that the “goodput” of each flow 
depends only on its own arrival rate and on the service rate p. 
Clearly the validity of these formulas relies heavily on our use 
of the PASTA property and cannot be expected to generalize to 
non-Poisson settings. Nevertheless, given the Poisson assump- 
tion it is equally true for other variants. For example, if we 
consider a scheme where both the drop candidate packet and the 
packet to be serviced are chosen randomly from the queue, it 
is again true that pl,,l = p ~ , , ~  = = p l  and hence that 
p1 = &. More generally, whenever there is a symmetry 
between the service discipline (e.g. FIFO, random, etc) and the 
comparisonldropping discipline (respectively, packet at the head 
of the queue, randomly chosen packet, etc) one can invoke the 
PASTA property. Observe that pl and p2 are strictly less then 
1/2 for all values of X i  and p. This implies that po is always 
strictly positive, ensuring that the queue-size process is positive 
recurrent for all values of X i  and p, 

When the number of flows, N ,  is bigger than two, all of the 
previoits PASTA arguments will go through and one obtains 

from which the goodput of flow i is seen to be ppi .  For N > 2 
stability is not automatically guaranteed and one requires that 
the arrival rates X i  satisfy 

N N 

(2)  

Equation (2) merely expresses the fact that the total effective 
arrival rate should be less than the average service rate since 

ote that the condition in Equation (2) is j I+ZX; - 
weaker than th: usual stability condition (net arrival rate strictly 
less than service rate): 

i=l i= 1 

xi - Xi(l-ZPi1 N . 

N .  C:<ll 
i= 1 

(3) 

in the sense that any positive vector (XI,. . . A,) that satisfies 
(3) also satisfies (2). This is simply a consequence of the in- 
equality k > &. 

Table If compares the throughputs Ti of independent Poisson 
flows sharing a single FIFO buffer with service rate p = 1 and 
different arrival rates Xi. The column “Simulation” gives the 
throughputs obtained by simulating the queue and the column 
“Theory” gives throughputs obtained from the formulas derived 
above. 

E. Euck CHOKe 
Back CHOKe refers to the situation where the drop candidate 

packet is always chosen from the back of the queue. Accord- 
ing to the algorithm, the most recently admitted packet and an 
incoming packet will be dropped if their flow ids are identical. 
Again if the server chooses to serve the packet at the back of the 

TABLE I1 
FRONT CHOKE SIMULATION A N D  MODEL COMPARISON. 

Ti =THROUGHPUT OF FLOW i = pp, 

queue, and arrivals and services are Poisson, the symmetry be- 
tween the service and dropping disciplines allows one to invoke 
the PASTA property and obtain results similar to that of the pre- 
vious section. But this scheme has the obvious disadvantage that 
the departure order of packets is reversed, rendering this scheme 
impractical. 

On the other hand, it is more difficult to analyze the situation 
in which packets are dropped from the back but serviced from 
the front. We seek a compromise between tractability and practi- 
sability by introducing the following further modification. Sup- 
pose the router records, in a separate memory location “Mloc”, 
the flow id of the most recently admitted packet. The id of each 
arriving packet is compared against the entry in Mloc and the 
packet is dropped if there is an agreement in the ids. Else, the 
incoming packet is admitted and its id is stored in Mloc. Notice 
that in this scheme packets are only dropped when they arrive 
and that it is possible for a packet to be dropped even when the 
queue is empty. 

With independent Poisson arrivals (and regardless of the ser- 
vice distribution), this scheme bears a striking resemblance to 
the interacting particle system of the marching soldiers. In the 
marching soldiers problem, soldiers (infinite or finite in number) 
are placed at integer points on the x-axis. They all face the pos- 
itive y-axis direction. The soldier at location i has a clock that 
ticks according a Poisson process of rate X i ,  independently of 
the clocks of the other soldiers. When hisher clock ticks, a sol- 
dier is allowed to take a step forward. The interaction is caused 
by the requirement that no soldier may be more than one step 
ahead of hidher immediate neighbors. This interaction may be 
said to be “fair” in the sense that the speed with which a soldier 
can move is regulated by the speed with which hisher neigh- 
bors (and, by extension, the speed with which the whole file) 
can move. 

To relate this to the version of back CHOKe we are study- 
ing, suppose that N soldiers are placed at the vertices of a fully 
connected graph (so that everybody is everybody else’s neigh- 
bor), and that we record the id of the soldier who most recently 
advanced. Impose the requirement that no soldier can take two 
consecutive steps before at least one of the others has taken a 
step. This problem is exactly the version of back CHOKe we 
wish to analyze. 
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Given independent Poisson arrivals and N sources the system 
can be modelled as a Markov chain, where the state is equal to 
the id stored in Mloc. The transition probabilities for this chain 
are P,j = &, where S = E,"=, A k .  The Markov chain is 
reversible since the condition w, Pij = 7rj Pji is satisfied by the 
stationary distribution: 

3 Inpw Results 
N M X i  Xa As  X4 A5 TI Tz T3 T 4  Ts 
4 0 1 1 1 7 - 0.1 0.1 0.1 0.7 - 

U 

(4) 

Thus, given the Xi, one can easily evaluate the ~ i ,  which are 
the long run average number of packets of type i that are admit- 
ted. Since admitted packets are never dropped, assuming that 
the service rate is large enough, ri equals the share of the band- 
width of the outgoing link that source i obtains. 

An obvious interesting generalization is to store the id of the 
M 5 N most recently admitted packets in Mloc. It is clear that 
we still have a Markov chain with N ! / ( N  - M ) !  states, where 
each state corresponds to an ordered vector denoting the type 
of the M most recently admitted packets. An arriving packet 
will not be admitted if its id is in Mloc. Although the chain is 
no longer reversible, it is dynamically reversible [9], as we shall 
soon see. Associate with each state s = (i, j ,  . . . , k) the conju- 
gate state sf = (k, . . . , j, i) which is just the reversal of s. We 
point out that the entries in state s are distinct, as required by 
our scheme. Now, for each pair of states T ,  s and their respec- 
tive conjugates T+ , s+, dynamic reversibility can be verified by 
checlung that the condition 7r,P,, = 7r,+Ps+,+ holds. 

For concreteness and notational simplicity, consider the case 
M = 2. Write (ij) for the state of Mloc when the most recent 
packet to enter the queue is of type j and the second most recent 
entry into the queue is of type i. The transition probabilities are 
P(ij),(jk) = s-2f-Xj. Recall that (ij)+ = (ji). It is easy to 
check that the condition: 

(5) 
A&(S - A; - X j )  

7rij = cL1 A,Aj(S - Xi - A,), 

fori  # j andT,j = Ofori = j. 
As before, packets that enter the queue will never be dropped. 

Thus the throughput of source i is simply equal to xi, where for 
i = 1, . . . , N ,  7ri = 7 r i j .  The condition for the stability of 
the queue is: 

-&Ti < p. 
i=l 

Table 111 presents some results for back CHOKe. As it can be 
seen by Equations (4),(5) the stationary distribution is indepen- 
dent of p. However, for these results to make sense ,U should 
satisfy the stability condition. Comparing the first and the sec- 
ond row we see the improvement we get by back CHOKe even 

TABLE 111 
BACK CHOKERESULTS. Ti =THROUGHPUTOF FLOW a = T,. 

for a memory of one, over the case where we admit all the pack- 
ets. Admitting all the packets is equivalent to having no mem- 
ory. In this case, the transition probabilities are simply equal to 
Pij = Xj/S. The relationship between memory and throughput 
is tabulated in the other rows of the table. 

C. Modeling implications 
Our objectives in this section are twofold: First, we interpret 

and summarize the formulas obtained for the theoretical models. 
Second, we comment on the use of these models to understand 
the networks with UDP and TCP flows simulated in Section HI. 

We begin with front CHOKe. Table I1 shows that as the of- 
fered rate of a flow increases, it's throughput does not increase 
proportionally. For example, with A1 held constant at 3, and as 
A2 increases from 4 to 5 to 6, the throughput of flow 2 increases 
only slightly (from 0.444 to 0.455 to 0.462) while the through- 
put of flow 1 remains constant at 0.429 due to the independence 
between flows. This is in keeping with the notion of fairness that 
greedy flows are penalized more as their offered load increases. 

Now consider the simulation scenario of Section iII. There 
are 32 TCP flows and 1 UDP flow. Write A u ~ p  for the offered 
rare of the UDP flow and p for the service rate which is equal 
to 1000 Kbps, the capacity of the bottleneck link. Although 
the traffic is far from being Poisson, Equation (1) approximates 
the situation well enough. From Figure 5 we can see that when 
XUDP = 1000 Kbps, the UDP drop percentage is 74.1% (thus 
UDP goodput is about 280 Kbps). The theoretical drop percent- 
age is 2-2x1~~~'1000 = 66%, which is close enough to the simu- 
lation value of 74.1 %. For A u ~ p  = 500 Kbps, the drop probabil- 
ities are 50% (model) and 57.3% (simulation). And for X u ~ p  = 
3000 Kbps the corresponding numbers are 85.7% (model) and 
92.4% (simulation). Since TCP flows are sensitive to conges- 
tion, they lack the independent increments property of the Pois- 
son process and the model cannot predict their behavior reliably. 
However, since UDP is completely congestion unaware, its in- 
stantaneous packet submission rate does not vary and the model 
captures it's behavior well enough even though its distribution 
is not Poisson. 

Another interesting point is that for X i  >> p 3 pi ts: 112. 
This is evident in Figure 6 for the UDP flow. Further, Ti can 
never be more than 50%. In other words a flow cannot consume 
more than half of the bottleneck bandwidth. Since 2pi N 1, 
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nearly all the packets of very aggressive flows are dropped, as 
is the case in Figure 51°. At the other extreme when A, <( p ,  
p ,  N A,/p, p i / p j  21 Ai/&.  In a sense this ratio of the drop 
probabilities is really a statement about the fairness of the drop- 
ping scheme. That is, flows which have a high arrival rate rela- 
tive to other flows incur a higher proportion of drops. 

Now consider back CHOKe and the results tabulated in Table 
111. As in front CHOKe, we observe that as the difference be- 
tween the arrival rates of the various flows increases, the differ- 
ence between the throughput does not increase proportionally. 
For example, the last two columns of Table III show that the dif- 
ference in the maximum throughput of flow 5 is very small even 
when its arrival rate is more than doubled. 

The most interesting observation with back CHOKe has to do 
with thz memory M .  It is clear from the first three rows of Table 
III that as the memory increases, the scheme becomes more fair 
since the throughput of each flow approaches its fair share. In 
the special case where N - M = 1 the scheme behaves like a 
round robin algorithm, resulting in perfect fairness among the 
Bows. The amount of memory can be considered as the coun- 
terpart of the number of drop candidate packets in the original 
CHOKe, even though in the model of back CHOKe we don’t 
drop packets from the queue as we do in the original scheme. In 
Figure 8 we observe that although as we increase the number of 
drop candidate packets the results are better, the improvement 
between two consecutive numbers of drop candidate packets is 
getting smaller. This conclusion can be also drawn from Table 
III. We note that by using a memory of I ,  the maximum through- 
put decreases by 0.7 - 0.4375 = 0.2625, by using a memory of 
2 it decreases by 0.4375 - 0.3182 = 0.1193 < 0.2625, and by 
using Id = 3 it decreases by 0.0682 < 0.1193. 

v. CONCLUSIONS 

This paper proposes a packet dropping scheme, CHOKe, 
which aims to approximate fair queueing at a minimal im- 
plementation overhead. Simulations suggest that it works 
well in protecting congestion-sensitive flows from congestion- 
insensitive or congestion-causing flows. Analytical models were 
derived for gaining insights about the algorithm and for under- 
standing the simulations. Further work involves studying the 
performance of the algorithm under a wider range of parame- 
ters, network topologies and real traffic traces, obtaining more 
accurate theoretical models and insights, and considering hard- 
ware implementation issues. 
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