
CHOKe
A stateless active queue management scheme
for approximating fair bandwidth allocation

Rong Pan, Balaji Prabhakar”, Konstantinos Psounis
Department of Electrical Engineering

Department of Electrical Engineering and Computer Science
Stanford University
Stanford, CA 94305

{ rong,balaji,kpsounis} @leland.stanford.edu

*

Abstract-We investigate the problem of providing a fair bandwidth allo-
cation to each of n flows that share the outgoing link of a congested router.
The buffer at the outgoing link i s a simple FIFO, shared by packets be-
longing to the n flows. We devise a simple packet dropping scheme, called
CHOKe, that discriminates against the Rows which submit more pack-
ets/sec than is allowed by their fair share. By doing this, the scheme aims to
approximate the fair queueing policy. Sice it is stateless and easy to imple-
ment, CHOKe controls unresponsive or misbehaving flows with a minimum
overhead’.

Keyworh- fair queueing, RED, active queue management, scheduling
algorithm.

I. INTRODUCTION
The Internet provides a connectionless, best effort, end-to-

end packet service using the IF’ protocol. It depends on conges-
tion avoidance mechanisms implemented in the transport layer
protocols, like TCP, to provide good service under heavy load.
However, a lot of TCP implementations do not include the con-
gestion avoidance mechanism either deliberately or by accident.
Moreover, there are a growing number of UDP-based applica-
tions running in the Internet, such as packet voice and packet
video. The flows of these applications do not back off prop-
erly when they receive congestion indications. As a result, they
aggressively use up more bandwidth than other TCP compati-
ble flows. This could eventually cause “Internet Meltdown” [2].
Therefore, it is necessary to have router mechanisms to shield
responsive flows from unresponsive or aggressive flows and to
provide a good quality of service (QoS) to all users.

As discussed in [2], there are two types of router algorithms
for achieving congestion control, broadly classified under the
monikers “scheduling algorithms” and “queue management al-
gorithms”. The generic scheduling algorithm, exemplified by
the well-known Fair Queueing (FQ) algorithm, requires the
buffer at each output of a router to be partitioned into separate
queues each of which will buffer the packets of one of the flows
[3]. Packets from the flow buffers are placed on the outgoing
line by a scheduler using an approximate bit-by-bit, round-robin
discipline. Because of per flow queueing, packets belonging to
different flows are essentially isolated from each other and one

This mearch is suppxted in part by a TERMAN FeUewship and a Stanford
Graduate Fellowship.

flow cannot degrade the quality of another. However, it is well-
known that this approach requires complicated per flow state
information, making it too expensive to be widely deployed.

To reduce the cost of maintaining flow state information, Sto-
ica et a1 [16] have recently proposed a scheduling algorithm
called Core Stateless Fair Queueing (CSFQ). In this method
routers are divided into two categories: edge routers and core
routers. An edge router keeps per flow state information and
estimates each flow’s arrival rate. These estimates are inserted
into the packet headers and passed on to the core routers. A
core router simply maintains a stateless FIFO queue and, dur-
ing periods of congestion, drops a packet randomly based on
the rate estimates. This scheme reduces the core router’s design
complexity. However, the edge router’s design is still compli-
cated. Also, because of the rate information in the header, the
core routers have to extract packet information differently from
traditional routers. Another notable scheme which aims to ap-
proximate FQ at a smaller implementation cost is Stochastic Fair
Queueing (SFQ) proposed by McKenny [13]. SFQ classifies
packets into a smaller number of queues than FQ using a hash
function. AIthough this reduces FQ’s design complexity, SFQ
still requires around 1000 to 2000 queues in a typical router to
approach FQ’s performance [121.

Thus, scheduling algorithms can provide a fair bandwidth al-
location, but they are often too complex for high-speed imple-
mentations and do not scale well to a large number of users. On
the other hand, queue management algorithms have had a sim-
ple design from the outset. Given their simplicity, the hope is
to approximate fairness. This class of algorithms is exemplified
by Random Early Detection (RED) [5] . A router implementing
RED maintains a single FIFO to be shared by all the flows, and
drops an arriving packet at random during periods of conges-
tion. The drop probability increases with the level of conges-
tion. Since RED acts in anticipation of congestion, it does not
suffer from the “lock out” and “full queue” problems [2] inher-
ent in the widely deployed Drop Tail mechanism. By keeping
the average queue-size small, RED reduces the delays experi-
enced by most flows. However, like Drop Tail, RED is unable to
penalize unresponsive flows. This is because the percentage of

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 942 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

packets dropped from each flow over a period of time is almost
the same. Consequently, misbehaving traffic can take up a large
percentage of the link bandwidth and starve out TCP friendly
flows.

To improve RED’S ability for distinguishing unresponsive
users, a few variants (like RED with penalty box [6] and Flow
Random Early Drop (FRED) [l 13) have been proposed. How-
ever, these variants incur extra implementation overhead since
they need to collect certain types of state information. RED with
penalty box stores information about unfriendly flows while
FRED needs information about active connections. The re-
cent paper by Ott et al [I41 proposes an interesting algorithm
called Stabilized RED (SRED) which stabilizes the occupancy
of the FIFO buffer, independently of the number of active Rows.
More interestingly, S E D estimates the number of active con-
nections and finds candidates for misbehaving flows. It does this
by maintaining a data structure, called the “Zombie list”, which
serves as a proxy for information about recently seen flows. Al-
though SRED identifies misbehaving flows, it does not propose
a simple router mechanism for penalizing misbehaving flows.
The CHOKe algorithm proposed below simultaneously identi-
fies and penalizes misbehaving flows, and is simpler to imple-
ment than SRED.

In summary, all of the router algorithms (scheduling and
queue management) developed thus far have been either able to
provide fairness or simple to implement, but not both simultane-
ously. This has led to the belief that the two goals are somewhat
incompatible (see [17]).

This paper takes a step in the direction of bridging fairness
and simplicity. Specifically, we exhibit an active queue man-
agement algorithm, called CHOKe, that is simple to implement
(since rt requires no state information) and differentially penal-
izes misbehaving flows by dropping more of their packets. By
doing this, CHOKe (CHOose and Keep for responsive flows,
CHOose and Kill for unresponsive flows) aims to approximate
max-min fairness for the flows that pass through a congested
route?.

The basic idea behind CHOKe is that the contents of the FIFO
buffer form a “sufficient statistic” about the incoming traffic and
can be used in a simple fashion to penalize misbehaving flows.
When a packet arrives at a congested router, CHOKe draws a
packet at random from the FIFO buffer and compares it with the
arriving packet. If they both belong to the same flow, then they
are both dropped, else the randomly chosen packet is left intact
and the arriving packet is admitted into the buffer with a proba-
bility that depends on the level of congestion (this probability is
computed exactly as in RED). The reason for doing this is that
the FIFO buffer is more likely to have packets belonging to a
misbehaving flow and hence these packets are more likely to be
chosen for comparison. Further, packets belonging to a misbe-

*Note that we implicitly assume that the statishcal characteristics and QoS
requirements of each of the flows are identical. There is no loss of generality
in making this assumption, since the paradigm of Class Based Queueing, e.g.
as propored in [4], allows one to extend the basic CHOKe scheme to a network
consisting of heterogeneous flows.

having Row arrive more numerously and are more likely to trig-
ger comparisons, The intersection of these two high probability
events is precisely the event that packets belonging to misbehav-
ing flows are dropped. Therefore, packets of misbehaving flows
are dropped more often than packets of well-behaved flows3.

The rest of the paper is organized as follows: Section 2 ex-
plains our motivation and goals for using the CHOKe mecha-
nism and describes the CHOKe algorithm (and a few variants)
in detail. The simulation results are presented in Section 3. In
Section 4, we propose and analyze models for the CHOKe algo-
rithm. Our conclusions are presented in Section 5.

11. MOTIVATION, GOALS, AND THE ALGORITHM
Our work is motivated by the need for a simple, stateless al-

gorithm that can achieve flow isolation and/or approximate fair
bandwidth allocation. As mentioned in the introduction, exist-
ing algorithms (like RED, FQ and others) are either simple to
implement or able to achieve flow isolation, but not both simul-
taneously.

We seek a solution to the above problem in the context of the
Internet. Thus, we are motivated to find schemes that differen-
tially penalize “unfriendly” or “unresponsive” Rows4, which im-
plies bad implementations of TCP, and UDP-based Rows. Fur-
ther, we seek to preserve some key features that RED possesses;
such as its ability to avoid global synchronization5, its ability
to keep buffer occupancies small and ensure low delays, and its
lack of bias against bursty traffic. By doing this, in the absence
of unfriendly or unresponsive flows our algorithm will perform
similarly to RED.

Next, we need a benchmark to compare the extent of fairness
achieved by our solution. Maxmin fairness suggests itself as
a natural candidate for two reasons: (a) It is well-defined and
widely understood in the context of computer networks (see [11,
page 526, or [IO]), and (b) the FQ algorithm is known to achieve
it. However, for any scheme to achieve perfect maxmin fair-
ness without flow state information seems almost impossible.
Maxmin fairness is not suitable in our context since we do not
identify the flow(s) with the minimum resource allocation and
maximize its (their) allocation. Instead we identify and reduce
the allocation of the flows which consume the most resources.
In other words, we attempt to minimize the resource consuinp-
tion of the maximum flow or seek to achieve minmax fairness6.
The resource freed up as a result of minimizing the maximum
flow’s consumption is distributed among the other flows. In the
Internet context the former flows are either unfriendly TCP or
UDP, and the latter flows are TCP.

3T0 our knowledge, the only other algorithm that makes a random comparison
to identify misbehaving flows is SRED. The idea of making a random compari-
son, observed independently by us, is dxectiy taken advantage of in CHOKe (i.e.
without maintaining state information) to differentially drop packets belonging
to misbehaving flows.

4see [71 for a formal definition of these terms
6Global synchronization refers to the situation where a lot of connections de-

crease or increase their window size at the same time, as happens under the Drop
Tail mechanism (cf. IS]).

6Although we have not formally defined minmax fairness and don’t explicitly
invoke it, our meaning should be clear to the reader.

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 943 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

A n g packet

a probability p

Fig. 1. The CHOKe algorithm

A. The CHOKe algorithm

Suppose that a router maintains a single FIFO buffer for
queueing the packets of all the flows that share an outgoing link.
We describe an algorithm, CHOKe, that differentially penalizes
unresponsive and unfriendly flows. The state, taken to be the
number of active flows and the flow ID of each of the packets, is
assumed to be unknown to the algorithm. The only observable
for the algorithm is the total occupancy of the buffer.

CHOKe calculates the average occupancy of the FIFO buffer
using an exponential moving average, just as RED does. It also
marks two thresholds on the buffer, a minimum threshold minth
and a maximum threshold maxth.

If the average queue size is less than minth, every arriving
packet is queued into the FIFO buffer. If the aggregated arrival
rate is smaller than the output link capacity, the average queue
size should not build up to minth very often and packets are
not dropped frequently. If the average queue size is greater than
maxth, every arriving packet is dropp.ed. This moves the queue
occupancy back to below maxth. When the average queue size
is bigger than mznth, each arriving packet is compared with a
randomly selected packet, called drop candidate packet, from
the FIFO buffer. If they have the same flow ID, they are both
dropped. Otherwise, the randomly chosen packet is kept in the
buffer (in the same position as before) and the arriving packet
is dropped with a probability that depends on the average queue
size. The drop probability is computed exactly as in RED. In
particular, this means that packets are dropped with probability
1 if they arrive when the average queue size exceeds muxth.
A flow chart of the algorithm is given in Figure 1. In order to
bring the queue occupancy back to below muxth as fast as pos-
sible, we still compare and drop packets from the queue when
the queue size is above the maxth.

In general, one can choose m > 1 packets from the buffer,
compare all of them with the incoming packet, and drop the
packets that have the same flow ID as the incoming packet. Not
surprisingly, we shall find that choosing more than one drop can-
didate packet improves CHOKe’s performance. This is espe-
cially true when there are multiple unresponsive flows; indeed,

as the number of unresponsive flows increases, it is necessary
to choose more drop candidate packets. However, since we in-
sist on a completely stateless design, wt cannot a priori know
how many unresponsive flows are active at any time (and then
choose a suitable value form). It turns out that we can automate
the process so that the algorithm chooses the proper value of
m 2 1. One way of achieving this is to introduce an intermedi-
ate threshold intth which partitions the interval between mznth
and muxth into two regions. When the average buffer occu-
pancy is between minth and intth the algorithm can set m =. 1
and when the average buffer occupancy is between intth and
muxth it sets m = 2.’ More generally, we can introduce mul-
tiple thresholds which partition the interval between minth and
maxth into k regions R I , Rz, . . . , R k and choose different val-
ues of m depending on the region the average buffer occupancy
falls in. For example, we could choose m = 2 . i (i = 1 . . . , I C) ,
when the average queue size lies in region Ri. Obviously, we
need to let m increase monotonically with the average queue
size.

CHOKe is a truly stateless algorithm. It does not require any
special data structure. Compared to a pure FIFO queue, there
are just a few simple extra operations that CHOKe needs to per-
form: draw a packet randomly from $e queue, compare flow
IDS, and possibly drop both the incoming and the candidate
packets. Since CHOKe is embedded in RED, it inherits the good
features of RED mentioned previously. Finally, as a stateless al-
gorithm, it’s nearly as simple to implement as RED. To see this,
let us consider the details of implementation. Drawing a packet
at random can be implemented by generating a random address
from which a packet flow ID is read out. Flow ID comparison
can be done easily in hardware. It is arguably more difficult
to drop a randomly chosen packet since this means removing it
from a linked-list. Instead of doing this, we propose to add one
extra bit to the packet header. The bit is set to one if the drop
candidate is to be dropped. When a packet advances to the head
of the FIFO buffer, the status of this bit determines whether it is
to be immediately discarded or transmitted on the outgoing line.

-Q

111. SIMULATION RESULTS
This section presents simulation results of CHOKe’s perfor-

mance in penalizing misbehaving flows and thus approximating
fair bandwidth allocation. We shall use the RED and Drop Tail
schemes, whose complexities are close to that of CHOKe, for
comparison. The simulations range over a spectrum of network
configurations and traffic mixes. The results are presented in
three parts: single congested link, multiple congested links, and
multiple misbehaving flows.

A. Single Congested Link

To illustrate CHOKe’s performance when there is a single
congested link, we consider the standard network configuration
shown in Figure 2. The congested link in this network is be-

‘When the buffer occupancy exceeds m a q h we start dropping each incom-
ing packet but m remains the same.

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 944 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

I 3 5 7 9 I I 13 I5 17 19 21 23 25 27 29 31 33
Flow Number

iom

a m .

Eta- -
3

Fig. 4. CHOKe: Throughput Per Flow

,. ,, . , , ,, , , . . , , . __, . _. ,.._. - -

J -- WDF'8 Throughput
-cHoKc U D F S Throughpc /

Fig. 2. Network Configuration: m TCP sources, n UDP sources

F
230 -

Fig. 3. UDP Throughput Comparison

tween the routers R1 and R2. The link, with capacity of 1 Mbps,
is shared by m TCP and n UDP flows. An end host is con-
nected to the routers using a 10 Mbps link, which is ten times
the bottleneck link bandwidth. All links have a small propaga-
tion delay of lms so that the delay experienced by a packet is
mainly caused by the buffer delay rather than the transmission
delay. 'l'he maximum window size of TCP is set to 300 such that
it doesn't become a limiting factor of a flow's throughput. The
TCP flows are derived from FTP sessions which transmit large
sized files. The UDP hosts send packets at a constant bit rate
(CBR) of T Kbps, where T is a variable. All packets are set to
have a size of 1K Bytes.

To study how much bandwidth a single nonadaptive UDP
source can obtain when routers use different queue management
schemes, we set up the following simulation: there are 32 TCP
sources (Flow1 to Flow32) and 1 UDP source (Flou33) in the
network. The UDP source sends packets at a rate T = 2 Mbps,
twice the bandwidth of the bottleneck link, such that the link
Rl-R2 becomes congested. The minimum threshold manth in
the RED and CHOKe schemes is set to 100, allowing on aver-
age around 3 packets per flow in the buffer before a router starts
dropping packets. Following [5] , we set the maximum thresh-
old mmth to be twice the ?ninth, and the physical queue size is

fixed at 300 packets. The throughput of the UDP flow under dif-
ferent router algorithms: DropTail, RED and CHOKe, is plotted
in Figure 3.

From Figure 3, we can clearly see that the RED and DropTail
gateways do not discriminate against unresponsive flows. The
UDP flow takes away more than 95% of the bottleneck link ca-
pacity and the TCP connections can only take the remaining 50
Kbps. CHOKe, on the other hand, improves the throughput of
the TCP flows dramatically by limiting the UDP throughput to
250 Kbps, which is only around 25% of the link capacity. The
total TCP flows' throughput is boosted from 50 Kbps to 750
Kbps.

To gauge the degree to which CHOKe achieves fair band-
width allocation, the individual throughput of each of the 33
connections in the simulation above, along with their ideal fair
shares, are plotted in Figure 4. Although the throughput of the
UDP flow (FZm33) is still higher than the rest of the TCP flows,
it can be seen that each TCP is allocated a bandwidth relatively
close to its fair share. In CHOKe, a packet could be dropped
because of a match or a random discard like in RED. A mis-
behaving flow, which has a high arrival rate and a high buffer
occupancy, incurs packet dropping mostly due to matches. On
the other hand, the packets of a responsive flow are hard to be
matched, and therefore get dropped mainly because of random
discard. In the above simulation, we find that matches are re-
sponsible for 85% of the UDP packet dropping, while 70% of
the TCP packets dropping are caused by random discard.

We vary the UDP arrival rate T to study CHOKe's perfor-
mance under different traffic load conditions. The simulation
results are summarized in Figure 5, where the UDP's throughput
versus the UDP flow arrival rate is plotted. The drop percentage
of the UDP flow is also shown in the figure. The ?ninth and the
maxth are set to 30 and 60 packets in this case to show that the
CHOKe scheme works under different threshold settings. From
the plot, we can see that CHOKe drops 23% of the UDP packets
when its arrival rate is as low as 100 Kbps. As the UDP arrival
rate increases, the drop percentage goes up as well. It drops al-
most all of the packets (98.3%) when the arrival rate reaches 10
Mbps. The average TCP flow's throughput stays almost con-
stant. In comparison, RED'S performance under different traffic

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 945 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

i ,-
-+ Ru): UDPi thmughput with mark for

UDP dmpping perantags

UDP Dropping Pcrccntagc
iaa -- -CHOKc:UDPs thmughpulwith mark for

+CHOKe: T C P S awagethmuebplt ,..
/

Y .. 27.8% 21.4% % E m / I
00

100 IWO

UDP Arrival Rate (Kbps)

Fig. 5. Performance under Different Traffic Load

" - - - ~ ~ ~

Im IC00 1"

UDP AmvJ Ralc (Kbpr)

Fig. 6. CHOKe's Queue Distribution Under Different Loadings

load is shown in Figure 5 as well. It is obvious that RED can't
provide protection against greedy connections. The unrespon-
sive flows use up all the network bandwidth and starve out the
well-behaving flows. When the average queue size goes above
the maw, and all the arrival packets are dropped, RED becomes
a Drop Tail scheme.

Figure 6 shows the queue distribution among the flows for
different traffic load conditions. It is not surprising that CHOKe
can control the average queue size as RED does since it imitates
RED on this sense. When the UDP arrival rate is 100 Kbps,
only a few times the rate of a single TCP flow, CHOKe is able
to detect this small difference and drops 23% of the UDP traffic.
When the UDP arrival rate goes up, its share of the queue occu-
pation increases. Therefore, it becomes easier to catch a UDP
flow packet as a drop candidate. Besides, with the increasing
arrival rate, the UDP flow triggers more comparisons. As a re-
sult, the probability of obtaining a match UDP packet increases.
Associated with each matching, there are two packets that get
dropped: the incoming one and the one from the queue. So when
the probability of matching approaches 0.5, for each incoming
UDP packet, there is on average 0.5 . O + 0.5 . 2 = 1 packet that
is being dropped; i.e. the proportion of dropped UDP packets
approaches 1 and of the UDP flow's goodput goes to zero. This
intuitively explains why the UDP throughput goes down under

Flow 2s Flow S to 14 Flow 25 Flow IO to 24

ROW 0 to 9 WOW 0 tO 4 Flow 15 to 24

0 TCPFlowSourcc 0 TCPFlowSink Router

0 UDPWowSource Q UDPPIowSink

Fig. 7. Topology of Multiple Link.

9 I 33.789 32.569 I - (1 22 1 34.955 I 33.138 1 33.138
10 I 34.088 I 32.216 I - II 23 I 33.816 I 32.379 I 32.379 ~. - - .- - _ _ . . ~ ~ . .~ ~ ~ ~ . .

11 I 37.396 I 36.094 I - 11 24 I 36.013 I 34.522 I 34.522
12 1 37.884 I 36.637 I - 11 25 1740.311 1332.854 I332.8S4

TABLE 1
EACH FLOW'S THROUGHPUT AT DIFFERENT LINKS

(TR~-R~=THROUGHPUT AT LINK RI-RI)

heavy load and why the average queue size of the UDP flow
doesn't even become the dominant portion of the queue usage.
The detailed discussions will be covered in Section IV.

B. Multiple Congested Links
So far we have seen the performance of CHOKe in a sim-

ple network configuration with one congested link. In this sec-
tion, we study how CHOKe performs when there are multiple
congested links in the network. A sample network configura-
tion with five routers is constructed as shown in Figure 7. The
first link between router RI and R2 (Rl-R2) has a capacity of
10 Mbps so that when the sources connected to it send pack-
ets at high rate, the following link R2-R3 becomes congested.
The third link, R3-R4, has only half the bandwidth of the link
R2-R3and becomes congested since the link's arrival rate ex-
ceeds its capacity. The final link R4-R5 is lightly loaded. Using
these links, we can demonstrate CHOKe's performance under
cascaded, multiple congested links. In total there are 25 TCP
flows and 1 UDP flow in the network, whose sources and sinks
are shown in the figure. The UDP source sends packets at a rate
of 2 Mbps while the other network parameters remain the same
with Figure 5 .

IEEE INFOCOM 2000 0-7803-5880-5/00/$10.00 (c) 2000 IEEE 9 46

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

0 20 U) 60 80 100 120

Time (second)

I +Bsris CHOKC: ToUl UDP Thmughpul
t Badc CnOKc: Told TCP T)lmughpul

Pig. 8. CHOKe with Multiple Drops: Throughput Comparison
Fig. 9. CHOKe: Throughput for 32 TCP and 5 UDP configuration

Table I lists the throughput of each flow at various links in the
network. We see that after competing with 25 TCP flows in the
first congested link R2-R3, the UDP flow loses around 63% of
its traflic when it sends data at the same rate as the link band-
width (2 Mbps). The UDP traffic that gets through to the next
link, R3-R4, constitutes 74% of the arrival rate at that link. The
flow suffers an additional 55% loss at this link when compet-
ing with the remaining 20 TCP flows. Comparing these results
with the single congested link case, we can see that each of the
cascaded congested links behaves roughly as if it was a single
congested link. Multiple congested links therefore have a mul-
tiplicative effect on UDP packet losses. Since TCP flows can
automatically detect their bottleneck link bandwidth, they suffer
much lzss loss.

iFrom the simulation results in Table I and the discussion
above, one infers that since TCP flows are responsive to con-
gestion indication and adjust their packet injection rates accord-
ingly, their packet loss rate in a network under the CHOKe
scheme is quite small. But nonadaptive flows, like UDP, suf-
fer from severe packet losses.

C. Multiple Misbehaving Flows
We now study the effect of the generalized CHOKe algorithm

where more than one drop candidate is drawn from the buffer.
Figure 8 shows the performance of the CHOKe algorithm with
one, two and three drop candidates. The network configuration
for the simulation is the same as the one in Figure 2. The rate
for the UDP source is 2 Mbps. Since CHOKe with m - 1 can-
didates has a maximum drop of m packets (m - 1 candidate
packet:; +l incoming packet), it will be referred to as CHOKe
with drop m. (Under this terminology the basic CHOKe scheme
will be referred to as CHOKe with drop 2.) Figure 8 shows that
CHOKe with multiple drops has a better control over the unre-
sponsive UDP traffic than the basic CHOKe algorithm, which is
not surprising’.

When there are many UDP flows in the network, CHOKe with
multiple drops exhibits its advantage over the basic algorithm. A

*It is interesting to observe that the performance improvement from CHOKe
drop 3 t o CHOKe drop 4 is very small.

Pig. 10. Self Adjusting CHOKe: Throughput for 32 TCP and 5 UDP configu-
ration

simulation configuration with 32 TCP and 5 UDP sources is set
up, using the basic network topology shown in Figure 2. All
the UDP sources are assumed to have the same arrival rate. The
minth and maxth are still set up to be 30 and 60 packets. The
simulation results for the basic CHOKe algorithm are given in
Figure 9. As shown in the figure, the throughput of the UDP
sources goes up monotonically with their arrival rate. As a re-
sult, there is almost no bandwidth left for the TCP sources. Al-
though the total UDP flows occupy almost all the buffer space,
each UDP connection takes only around 20% of the queue. As
a result, the chance of catching a right victim is low and UDP
flows can’t be regulated as desired.

On the other hand, CHOKe with 5 drops boosts the through-
put of the TCP flows in this situation, as shown in Figure 9. Be-
cause multiple drop candidates are selected from the queue, the
chance of catching the bad flows increases. Therefore, CHOKe
with multiple drops can penalize those flows that are hard to
detect but use more than their fair share of network bandwidth.

The above simulation illustrates the need for multiple drops
when there are multiple unresponsive flows. Since the average
queue size is a goad indication of congestion level, we use it to
automatically decide on the appropriate number of drops. The
scheme works as follows: the region between manth and maxth

0-7803-5880-5/00/$10.00 (C) 2000 IEEE 94 7 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

is divided into k subregions and the number of drops in a region
is set to 2 i (i = 1 . . . k). The simulation results, plotted in
Figure 10, clearly show that this self adjusting mechanism works
well in case of multiple unresponsive flows.

Iv. MODELING AND ANALYSIS OF THE ALGORITHM

This section develops some mathematical models for analyz-
ing the CHOKe algorithm. We distinguish among the following
three versions of CHOKe:
Original CHOKe, in which the drop candidate packet is cho-

sen randomly from the queue.
Front CHOKe, in which the drop candidate is always the

packet at the head of the queue.
Back CHOKe, in which the drop candidate is always the

packet at the tail of the queue.
The last two variations are introduced because of the difficulty
of analyzing the original CHOKe. For both the front and back
CHOKe simple models are presented, that are analyzable, and
are reasonable approximations of the actual scheme. In the next
two sections we use queues with Poisson arrivals and exponen-
tial services although this is unrealistic. Other than tractability,
these models allow us to gain some simple insights. We discuss
the suitability and the implications of these models for realistic
scenarios in Section IV-C.

A. Front CHOKe
Consider a queue with N independent Poisson arrivals, each

of rate Xi , and independent exponential service times. The
queueing discipline is first-in-first-out (FIFO) and the mean ser-
vice time of each packet is assumed to be l /p . To ease the
exposition, let us first consider only two arrival processes with
arrival rates XI and X2. We shall refer to the packets of these
flows as type 1 and type 2 packets, respectively.

An arriving packet is either admitted to the queue or dropped
upon arrival depending on the outcome of certain comparisons,
as explained next. Each arriving packet is compared with the
packet at the head of the queue (if the queue is nonempty). If the
types of both packets are the same, then they are both dropped.
Else, the arriving packet is admitted to the queue. Of course,
if a packet arrives at an empty queue, then it is automatically
admitted. We assume that the,queue has an infinite waiting room
and that packets can only be dropped either when they arrive or
when they are at the head of the queue. For now let us also
suppose that A1 + A2 < 1.1 so that the queue is stable. We shall
later see that with the dropping scheme in place the queue will be
stable for all values of X I , A2 and p. The assumption of stability
guarantees that an equilibrium distribution exists for the queue-
size process.

Write pl,,l (respectively, ~ 2 , ~ ~) for the probability that an ar-
riving packet of type 1 sees a type 1 (respectively, type 2) packet
at the head of the queue. Let p ~ , , ~ be the probability that an
arriving type 1 packet sees an empty queue. The well-known
PASTA9 property [18] asserts that pi, , , = pi for i = 0, I, 2,

gPASTA: Poisson Arrivals See Time Averages

Fig. 1 1. Front CHOKe model

where the pi are the corresponding equilibrium probabilities as
seen at an arbitrary instant of time. Since we have assumed that
both the arrival processes are Poisson and independent, the same
reasoning gives that the probability, pi,az, that an arriving type 2
packet sees a type i packet at the head of the queue also equals
p i , for i = 1,2 and the propapility that it sees an empty queue
also equals PO.

Given that the services are i.i.d. and exponential of rate l /p ,
we can represent the service process by an independent Poisson
process of rate p. Thus, service tokens arrive according to a
rate p Poisson process and will liberate the packet at the head
of the queue (whatever its type), so long as the queue is non-
empty. If the queue is empty when a service token arrives, then,
of course, the service token is wasted. Write p i , s , i = 1,2, for
the probability that a service token sees a type i packet at the
head of the queue. And let ~ 0 , ~ be the probability that a service
token arrives at an empty queue. Applying the PASTA property
again, we see that pi,8 also equals pi fori = 0,1,2.

We summarize these observations as follows: pi,al = =
pi,$ = pi fori = 0 ,1 ,2 . Of course, PO + p1 + p2 = 1.

We now use a rate conservation argument to evaluate the p i .
Consider just type 1 packets. The rate at which these packets
arrive is X I . A proportion p l of these packets is dropped at ar-
rival. A further proportion p l will be dropped from the head of
the queue. (We note in passing that packets are always dropped
in pairs.) Therefore, the rate of departure of type 1 packets from
the queue is A1 (1 - 2 p l) . But to each type 1 packet that leaves
the queue there corresponds a service token that liberated it.
Since service tokens arrive at rate p and a proportion p l of them
liberate type 1 packets, the rate at which service tokens cause
type 1 departures is pp1 (see Figure 11).

The requisite rate conservation equation is therefore A1 (1 -
2 p l) = p p l . Solving for pl we obtain that

A1
p + 2x1

Pl = -

Similarly,
A2

P2 = -
lL + 2x2.

The form of these probabilities is somewhat surprising: they
do not depend on the arrival rate (or, indeed, the number) of
other incoming flows. Since ppi is the departure rate of type

0-7803-5880-5/00/$10.00 (c) 2000 lEEE 948 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

i packets, this in turn implies that the “goodput” of each flow
depends only on its own arrival rate and on the service rate p.
Clearly the validity of these formulas relies heavily on our use
of the PASTA property and cannot be expected to generalize to
non-Poisson settings. Nevertheless, given the Poisson assump-
tion it is equally true for other variants. For example, if we
consider a scheme where both the drop candidate packet and the
packet to be serviced are chosen randomly from the queue, it
is again true that pl,,l = p ~ , , ~ = = p l and hence that
p1 = &. More generally, whenever there is a symmetry
between the service discipline (e.g. FIFO, random, etc) and the
comparisonldropping discipline (respectively, packet at the head
of the queue, randomly chosen packet, etc) one can invoke the
PASTA property. Observe that pl and p2 are strictly less then
1/2 for all values of X i and p. This implies that po is always
strictly positive, ensuring that the queue-size process is positive
recurrent for all values of X i and p,

When the number of flows, N , is bigger than two, all of the
previoits PASTA arguments will go through and one obtains

from which the goodput of flow i is seen to be ppi . For N > 2
stability is not automatically guaranteed and one requires that
the arrival rates X i satisfy

N N

(2)

Equation (2) merely expresses the fact that the total effective
arrival rate should be less than the average service rate since

ote that the condition in Equation (2) is j I+ZX; -
weaker than th: usual stability condition (net arrival rate strictly
less than service rate):

i=l i= 1

xi - Xi(l-ZPi1 N .

N . C:<ll
i= 1

(3)

in the sense that any positive vector (XI,. . . A,) that satisfies
(3) also satisfies (2). This is simply a consequence of the in-
equality k > &.

Table If compares the throughputs Ti of independent Poisson
flows sharing a single FIFO buffer with service rate p = 1 and
different arrival rates Xi. The column “Simulation” gives the
throughputs obtained by simulating the queue and the column
“Theory” gives throughputs obtained from the formulas derived
above.

E. Euck CHOKe
Back CHOKe refers to the situation where the drop candidate

packet is always chosen from the back of the queue. Accord-
ing to the algorithm, the most recently admitted packet and an
incoming packet will be dropped if their flow ids are identical.
Again if the server chooses to serve the packet at the back of the

TABLE I1
FRONT CHOKE SIMULATION A N D MODEL COMPARISON.

Ti =THROUGHPUT OF FLOW i = pp,

queue, and arrivals and services are Poisson, the symmetry be-
tween the service and dropping disciplines allows one to invoke
the PASTA property and obtain results similar to that of the pre-
vious section. But this scheme has the obvious disadvantage that
the departure order of packets is reversed, rendering this scheme
impractical.

On the other hand, it is more difficult to analyze the situation
in which packets are dropped from the back but serviced from
the front. We seek a compromise between tractability and practi-
sability by introducing the following further modification. Sup-
pose the router records, in a separate memory location “Mloc”,
the flow id of the most recently admitted packet. The id of each
arriving packet is compared against the entry in Mloc and the
packet is dropped if there is an agreement in the ids. Else, the
incoming packet is admitted and its id is stored in Mloc. Notice
that in this scheme packets are only dropped when they arrive
and that it is possible for a packet to be dropped even when the
queue is empty.

With independent Poisson arrivals (and regardless of the ser-
vice distribution), this scheme bears a striking resemblance to
the interacting particle system of the marching soldiers. In the
marching soldiers problem, soldiers (infinite or finite in number)
are placed at integer points on the x-axis. They all face the pos-
itive y-axis direction. The soldier at location i has a clock that
ticks according a Poisson process of rate X i , independently of
the clocks of the other soldiers. When hisher clock ticks, a sol-
dier is allowed to take a step forward. The interaction is caused
by the requirement that no soldier may be more than one step
ahead of hidher immediate neighbors. This interaction may be
said to be “fair” in the sense that the speed with which a soldier
can move is regulated by the speed with which hisher neigh-
bors (and, by extension, the speed with which the whole file)
can move.

To relate this to the version of back CHOKe we are study-
ing, suppose that N soldiers are placed at the vertices of a fully
connected graph (so that everybody is everybody else’s neigh-
bor), and that we record the id of the soldier who most recently
advanced. Impose the requirement that no soldier can take two
consecutive steps before at least one of the others has taken a
step. This problem is exactly the version of back CHOKe we
wish to analyze.

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 949 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

Given independent Poisson arrivals and N sources the system
can be modelled as a Markov chain, where the state is equal to
the id stored in Mloc. The transition probabilities for this chain
are P,j = &, where S = E,"=, A k . The Markov chain is
reversible since the condition w, Pij = 7rj Pji is satisfied by the
stationary distribution:

3 Inpw Results
N M X i Xa As X4 A5 TI Tz T3 T 4 Ts
4 0 1 1 1 7 - 0.1 0.1 0.1 0.7 -

U

(4)

Thus, given the Xi, one can easily evaluate the ~ i , which are
the long run average number of packets of type i that are admit-
ted. Since admitted packets are never dropped, assuming that
the service rate is large enough, ri equals the share of the band-
width of the outgoing link that source i obtains.

An obvious interesting generalization is to store the id of the
M 5 N most recently admitted packets in Mloc. It is clear that
we still have a Markov chain with N ! / (N - M) ! states, where
each state corresponds to an ordered vector denoting the type
of the M most recently admitted packets. An arriving packet
will not be admitted if its id is in Mloc. Although the chain is
no longer reversible, it is dynamically reversible [9], as we shall
soon see. Associate with each state s = (i, j , . . . , k) the conju-
gate state sf = (k, . . . , j, i) which is just the reversal of s. We
point out that the entries in state s are distinct, as required by
our scheme. Now, for each pair of states T , s and their respec-
tive conjugates T+ , s+, dynamic reversibility can be verified by
checlung that the condition 7r,P,, = 7r,+Ps+,+ holds.

For concreteness and notational simplicity, consider the case
M = 2. Write (ij) for the state of Mloc when the most recent
packet to enter the queue is of type j and the second most recent
entry into the queue is of type i. The transition probabilities are
P(ij),(jk) = s-2f-Xj. Recall that (ij)+ = (ji). It is easy to
check that the condition:

(5)
A&(S - A; - X j)

7rij = cL1 A,Aj(S - Xi - A,),

fori # j andT,j = Ofori = j.
As before, packets that enter the queue will never be dropped.

Thus the throughput of source i is simply equal to xi, where for
i = 1, . . . , N , 7ri = 7 r i j . The condition for the stability of
the queue is:

-&Ti < p.
i=l

Table 111 presents some results for back CHOKe. As it can be
seen by Equations (4),(5) the stationary distribution is indepen-
dent of p. However, for these results to make sense ,U should
satisfy the stability condition. Comparing the first and the sec-
ond row we see the improvement we get by back CHOKe even

TABLE 111
BACK CHOKERESULTS. Ti =THROUGHPUTOF FLOW a = T,.

for a memory of one, over the case where we admit all the pack-
ets. Admitting all the packets is equivalent to having no mem-
ory. In this case, the transition probabilities are simply equal to
Pij = Xj/S. The relationship between memory and throughput
is tabulated in the other rows of the table.

C. Modeling implications
Our objectives in this section are twofold: First, we interpret

and summarize the formulas obtained for the theoretical models.
Second, we comment on the use of these models to understand
the networks with UDP and TCP flows simulated in Section HI.

We begin with front CHOKe. Table I1 shows that as the of-
fered rate of a flow increases, it's throughput does not increase
proportionally. For example, with A1 held constant at 3, and as
A2 increases from 4 to 5 to 6, the throughput of flow 2 increases
only slightly (from 0.444 to 0.455 to 0.462) while the through-
put of flow 1 remains constant at 0.429 due to the independence
between flows. This is in keeping with the notion of fairness that
greedy flows are penalized more as their offered load increases.

Now consider the simulation scenario of Section iII. There
are 32 TCP flows and 1 UDP flow. Write A u ~ p for the offered
rare of the UDP flow and p for the service rate which is equal
to 1000 Kbps, the capacity of the bottleneck link. Although
the traffic is far from being Poisson, Equation (1) approximates
the situation well enough. From Figure 5 we can see that when
XUDP = 1000 Kbps, the UDP drop percentage is 74.1% (thus
UDP goodput is about 280 Kbps). The theoretical drop percent-
age is 2-2x1~~~'1000 = 66%, which is close enough to the simu-
lation value of 74.1 %. For A u ~ p = 500 Kbps, the drop probabil-
ities are 50% (model) and 57.3% (simulation). And for X u ~ p =
3000 Kbps the corresponding numbers are 85.7% (model) and
92.4% (simulation). Since TCP flows are sensitive to conges-
tion, they lack the independent increments property of the Pois-
son process and the model cannot predict their behavior reliably.
However, since UDP is completely congestion unaware, its in-
stantaneous packet submission rate does not vary and the model
captures it's behavior well enough even though its distribution
is not Poisson.

Another interesting point is that for X i >> p 3 pi ts: 112.
This is evident in Figure 6 for the UDP flow. Further, Ti can
never be more than 50%. In other words a flow cannot consume
more than half of the bottleneck bandwidth. Since 2pi N 1,

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 950 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

nearly all the packets of very aggressive flows are dropped, as
is the case in Figure 51°. At the other extreme when A, <(p ,
p , N A,/p, p i / p j 21 Ai/&. In a sense this ratio of the drop
probabilities is really a statement about the fairness of the drop-
ping scheme. That is, flows which have a high arrival rate rela-
tive to other flows incur a higher proportion of drops.

Now consider back CHOKe and the results tabulated in Table
111. As in front CHOKe, we observe that as the difference be-
tween the arrival rates of the various flows increases, the differ-
ence between the throughput does not increase proportionally.
For example, the last two columns of Table III show that the dif-
ference in the maximum throughput of flow 5 is very small even
when its arrival rate is more than doubled.

The most interesting observation with back CHOKe has to do
with thz memory M . It is clear from the first three rows of Table
III that as the memory increases, the scheme becomes more fair
since the throughput of each flow approaches its fair share. In
the special case where N - M = 1 the scheme behaves like a
round robin algorithm, resulting in perfect fairness among the
Bows. The amount of memory can be considered as the coun-
terpart of the number of drop candidate packets in the original
CHOKe, even though in the model of back CHOKe we don’t
drop packets from the queue as we do in the original scheme. In
Figure 8 we observe that although as we increase the number of
drop candidate packets the results are better, the improvement
between two consecutive numbers of drop candidate packets is
getting smaller. This conclusion can be also drawn from Table
III. We note that by using a memory of I , the maximum through-
put decreases by 0.7 - 0.4375 = 0.2625, by using a memory of
2 it decreases by 0.4375 - 0.3182 = 0.1193 < 0.2625, and by
using Id = 3 it decreases by 0.0682 < 0.1193.

v. CONCLUSIONS

This paper proposes a packet dropping scheme, CHOKe,
which aims to approximate fair queueing at a minimal im-
plementation overhead. Simulations suggest that it works
well in protecting congestion-sensitive flows from congestion-
insensitive or congestion-causing flows. Analytical models were
derived for gaining insights about the algorithm and for under-
standing the simulations. Further work involves studying the
performance of the algorithm under a wider range of parame-
ters, network topologies and real traffic traces, obtaining more
accurate theoretical models and insights, and considering hard-
ware implementation issues.

VI. ACKNOWLEDGMENT

Balaji Prabhakar thanks David Clark of MIT for several stim-
ulating discussions on the role of “state” in high-speed schedul-
ing algorithms. These discussions have influenced much of the

’OOne wonders why UDP does not consume half the bottleneck bandwidth
for large XUDP since this is what the model predicts. The answer lies in the
fact (observed in simulations) that even though UDP packeLs occupy half the
buffer space, the packet at the front of the buffer belongs to the UDP flow with
a probability much less than half, since it ha . survived many more comparisons
and is more likely to belong to TCP flows.

work in this paper.

REFERENCES
Bertsekas, D. and GaUager, R., Data Networks, Second edition, Prentice
Hall, 1992.
Braden, B., Clark, D., Crowcroft, J., Davie, B., Deering, S.,Estrin,
D., Floyd, S.. Jacobson, V., Minshall, G., Pamidge, C., Pererson,
L.,Ramakrisbnan,K., Shenker,S., Wroclawski, J., Zhang, L., “Recommen-
dations on queue management and congestion avoidance in the internet”,
IETF RFC (Informational) 2309, April 1998.
Demers, A.. Keshav, S. and Shenker, S., “Analysis and smulauon of a
fair queueing algorithm“, Journal of Internetworking Research and Expe-
rience, pp 3-26, Oct. 1990. Also in Proceedings of ACM SIGCOMM’89,

Floyd, S. and Jacobson, V., “Link-sharing and Resource Management
Models for Packet Networks’’, IEEUACM Transactions on Nerworking,

Floyd, S. and Jacobson, V.. “Random Early Detechon Gateways for Con-
gestion Avoidance”, IEEUACM Transaction oti Networking, 1(4), pp 397-
413, Aug. 1993.
Floyd, S., and Fall, K., “Router Mechanisms to Support End-to-End Con-
gestion Control”, LBL Technical report, February 1997.
Floyd, S., and Fall, K.. “Promoting the Use of End-to-End Congestion
Control in the Internet”, To appear In IEEWACM Transactions on Net-
working, August 1999.
Floyd, S., Fall, K. and Tieu, K., “Estimating Arrival Rates from
the RED Packet Drop History”. http://www.aciri.o~~oy~eg/poyd/end-
papechtml, April 1998.
Kelly, F., Reversibiliry and Sfochastic Network, John Wiley & Sons 1979.
Kwhav, S., “Congestion Control in Computer Networks”, PhD Thesis,
published as UC Berkeley TR-654 , September 199 1.
Lin, D. and Morris, R., “Dynamics of random early detection”, Proceed-
ings ofACM SIGCOMM’97. pp 127-137, Oct. 1997.
Manin, A. and Ramakrishnan K., “Gateway Congestion Control Survey’’,
IETF RFC (Informational) 1254. August 1991.
McKenny, P., “Stochaqtic Fairness Queueing”, Pmceedings of INFO-

Ott, T., Lakshman, T. and Wong, L., “SED: Stabilized RED’, Proceed-
ings of ZNFOCOM’99, pp 1346-1355, March 1999.
Pan, R. and Prabhakar, B., “CHOKe - A simple approach for providing
Quality of Service through stateless approximation of fair queueing”, Sran-
ford CSL Technical report CSL-TR-99-779, March 1999.
Stoica, I., Shenker, S. and Zhang, H., “Core-Stateless Fair Queueing:
Achieving Approximately Fair Bandwidth Allocations in High Speed Net-
works”, Proceedings of ACM SIGCOMM’98.
Suter, B., Lakshman, T., Stiliadis. D. and Choudhury, A., “Efiicient Active
Queue Management for Internet Routers“. Inrerop 98.
Wolff, R. Stochastic Modeling and the Theory of Queues, Prentice Hall
1989.
as - Network Simulator (Version 2.0), October 1998.

pp 3-12.

Vol. 3 NO. 4, pp. 365-386, August 1995.

COM’W, pp 733-740.

0-7803-5880-5/00/$10.00 (c) 2000 IEEE 951 IEEE INFOCOM 2000

Authorized licensed use limited to: Stanford University. Downloaded on September 14, 2009 at 18:36 from IEEE Xplore. Restrictions apply.

