2000 Conference on Information Sciences and Systems, Princeton University, March 15-17, 2000

A randomized cache replacement scheme approximating LRU

Konstantinos Psounis
Dept. of Electrical Eng.
Stanford University
Stanford, CA 94305
email:
kpsounis@leland.stanford.edu

Abstract —

A randomized algorithm is proposed for approxi-
mating the Least Recently Used (LRU) scheme for
page replacement in caches. In its basic version the
proposed algorithm performs as follows: When a new
page is to be evicted from the cache, the algorithm
randomly samples N pages from the cache and re-
places the least recently used page from the sample.
We then study the following enhancement of the basic
version: After replacing the least recently used page
from the sample, the next M < N least recently used
pages are retained for the next iteration. And when
the next replacement is to be performed, the algo-
rithm obtains N — M new samples from the cache, and
replaces the least recently used page from the N — M
new samples and the M previously retained. Both
the basic and enhanced versions perform very well
compared to existing random replacement schemes.
Rather surprisingly, we find that the enhanced scheme
can be exponentially better compared to the basic
scheme for very small values of M > 1. As may be
expected, we find that as M becomes large the per-
This suggests that, for a
given N, there is an optimal value of M '.

formance becomes worse.

I. INTRODUCTION

The page replacement problem in caches pertains to the
eviction rule for deciding which page currently in the cache
should be evicted to make room for a new page. If all the
page requests are known in advance, the best strategy is to
evict that item whose next request occurs furthest in the fu-
ture. This offline strategy is known as the MIN algorithm
[5]. Typically, it is not possible to know future requests. Al-
gorithms that assume no knowledge of future requests and
base their decisions only on past requests are called online
algorithms. The optimum online algorithm is known to be
the Least Recently Used (LRU) algorithm [5]. LRU works by
replacing that page in the cache whose most recent request
occurred furthest in the past. We shall refer to this distin-
guished page as the oldest page. Heuristically, LRU’s strategy
is based on the assumption that the probability a given page
will be accessed in the future is proportional to how recently
it was accessed for the last time in the past.

The implementation of LRU requires keeping track of the
age of all pages. Usually, this is done by a linked list or a stack.
However, this entails a large amount of work since, whenever
there is a cache access, up to six pointers need to be updated
[7]. Due to its complexity and need for hardware support LRU

IThis research is supported in part by a Stanford Graduate Fel-
lowship, a TERMAN Fellowship, and a DARPA grant.

Balaji Prabhakar
Dept. of Electrical Eng. and
Computer Science
Stanford University
Stanford, CA 94305

email: balaji@isl.stanford.edu email: engler@csl.stanford.edu

Dawson Engler
Dept. of Electrical Eng. and
Computer Science
Stanford University
Stanford, CA 94305

is not implemented in most of today’s systems [7]. Instead,
in practice, heuristic algorithms that approximate LRU are
used. But simplicity has come at the cost of performance.

A class of algorithms known for their simplicity and good
performance are the so-called randomized algorithms. For
cache replacement a particularly simple algorithm is the Ran-
dom Replacement (RR) algorithm. The RR algorithm draws
one page at random from the cache and replaces it [5]. A
more complicated algorithm that performs better than RR . is
the Marker algorithm [2]. This algorithm associates a marker
bit to each item of the cache and initializes its value to zero.
When an item from the cache is accessed, the marker bit is
set to one. The replacement strategy randomly chooses one
page from among those whose marker is zero and evicts it. A
further improvement of the marker algorithm is proposed in
[4].

We propose to combine the benefits of both the LRU and
the RR schemes. To this end the basic version of our scheme
draws NN pages from the cache and evicts the oldest page in
the sample. We then refine this scheme by observing that by
carrying the M next oldest samples from one iteration to the
next, tilts the distribution of the age of the sample towards
the older side and thus one expects the refinement to perform
better. More precisely, the refinement works as follows: After
replacing the least recently used page from the sample, the
next M < N least recently used pages are retained for the next
iteration. And when the next replacement is to be performed,
the algorithm obtains N — M new samples from the cache,
and replaces the least recently used page from the N — M new
samples and the M previously retained.

Taking the probability that the page being replaced is not
from the oldest n'" percentile of the pages in the cache as a
measure of performance, we find through analysis and sim-
ulation that there is indeed an improvement when M > 0.
Rather surprisingly, the improvement can be ezponential for
values of M as small as 1, 2 or 3. Further, for typical values
of N and n, the performance hardly improves as M increases
from 3. In fact, as M grows beyond N/2, we observe that
the performance degrades linearly. This suggests that there
is an optimal value of M for which the above probability is
minimized and thus the performance is best.

The rest of the paper is organized as follows. Section II
presents the details of the algorithm, and Section III presents
simulation results of its performance. In Section IV an analyt-
ical model is derived, its solution is computed and compared
with the results of simulation. Section V investigates the ques-
tion of how many samples one should keep at each iteration of
the algorithm in order to get the optimum performance, and
Section VI outlines a proof of the argument that there always
exists such an optimum. Finally, Section VII concludes the

paper.

II. A DISCUSSION OF THE ALGORITHM

The basic version of the algorithm performs as follows.
Whenever a page is to be evicted, N samples are drawn at
random from the population and the oldest (least recently
used) of these is evicted. An error is said to have occured if
the evicted page does not belong to the oldest n** percentile
of all the pages in the cache, for some desirable values of n.
Thus, the goal of the algorithms we consider is to minimize the
probability of error. With a slight abuse of language we shall
say that a page is old if it belongs to the oldest n*" percentile.

Tt is useful to conduct a quick analysis of the basic version
of the algorithm described above so as to have a benchmark
for comparison. Accordingly, suppose that all the pages are
divided into 100/n bins according to age and N pages are
sampled uniformly and independently from the cache. Then
the probability of error equals (1 —n/100)", ? which approxi-
mately equals e "V/1%° By increasing N this probability can
be made to approach 0 exponentially fast.

For example, when n = 5% by choosing N to equal 60
the probability of error is around 0.05. One asks whether it
is possible to get the same or better performance by draw-
ing fewer samples. We find that it is indeed possible to do
this by carrying good samples from one iteration to the next;
rather surprisingly, the improvement in performance can be
exponentially better.

We now describe the general procedure for carrying samples
from one iteration to the next. As before, we begin by ran-
domly choosing N samples. After replacing the least recently
used page from the sample, the next M < N least recently
used pages are retained for the next iteration. And when the
next replacement is to be performed, the algorithm obtains
N — M new samples from the cache, and replaces the least
recently used page from the N — M new samples and the M
previously retained. This procedure is repeated whenever a
page needs to be evicted. In pseudo-code we have:

if (eviction) {

If (first_iteration) {
sample (N) ;
evict_oldest;
keep_oldest (M) ;

} else {
sample (N-M) ;
evict_oldest;
keep_oldest (M) ;

One potential drawback of the enhanced version (M > 0)
as compared to the basic version (M = 0) is that it is possible
for a page that is retained to be accessed between iterations.
Such a page would no longer be old and the quality of the pages
retained degrades. However, we have observed that the chance
of this event occuring are very small *, and hence assume that
pages which are retained are not accessed between iterations.
Our assumption is also supported by the general philosophy

2 Although the algorithm samples without replacement, the val-
ues of N are so small compared to the overall size of the cache
that (1 —n/100)N almost exactly equals the probability of error. A
typical cache has 32K pages and the samples acquired are usually
around 60.

3Simulations with real page request traces show that our scheme
is very close to LRU, which supports our observation.

b | (m+1)th | 2y
| Am+l |
I I
Xm I K+l
| | | |
[+ [‘ »
1xms0) 1cxm+150)

Fig. 1: Eviction takes place prior to resampling.

of any efficient replacement policy: The older a page is, the
less likely it is to be accessed. Since, by design, the samples
retained between iterations are the oldest possible, we expect
that this issue will not significantly affect the performance of
the algorithm or our calculations.

III. SIMULATIONS

This section presents the results of various simulations that
indicate how the randomized algorithm performs.

Recall that a page is said to be old if it belongs to the oldest
n*" percentile of all pages in the cache. We will work with a
total sample size of N, of which M (0 < M < N) were retained
from the previous iteration. Of all the N samples some will
be old, belonging either to the M retained from the previous
iteration or to the N — M fresh samples. We are interested in
estimating (through simulation and analysis) the probability
of error, which is the probability that none of the IV pages in
the sample is old.

We proceed by introducing some helpful notation. Of the
M samples retained at the end of the (m — 1) iteration, let
Ym-1 (0 < Yy,—1 < M) be the number of old pages. At the
beginning of the m'” iteration, the algorithm chooses N — M
fresh samples. Let A, 0 < A, < N — M he the number
of old pages coming from the N — M fresh samples. In the
m*" iteration, the algorithm replaces one page out of the total
Ym-1+ Ay, available (so long as Y,,,_1 + A, > 0) and retains
M pages for the next iteration. Note that it is possible for the
algorithm to discard some old pages because of the memory
limit of M that we have imposed.

Define X,, = max(M + 1,Y,,—1 + A,,) to be number of
“useful” old pages; that is, these are precisely the old pages
that the algorithm would ever replace at eviction times. If
X,, = 0, then the algorithm commits an error at the m'"
It is easy to see that X,, is a Markov chain and
satisfies the recursion

eviction.

X, = max(M =+ 1,Xm,] — 1(Xm—1>0) -+ Am),

and that A,, is binomially distributed with parameters N — M
and n/100. Figure 1 is a schematic of the above embedded
Markov chain.

In the rest of this section we present plots showing how the
error, Py = P(X,, = 0), varies with M. The probabilities are
taken after the Markov chain has equilibirated. In order for
the scheme to have reasonably good performance, the number
of samples should be at least equal to the number of bins.
Thus, we have chosen N > 100/n.

Figure 2 shows a collection of plots of Py versus M for dif-
ferent values of N and n. The minimum value of P, is also
written on top of each figure. We note that given N and n
there are values of M > 0 for which the error probability is
very small compared to its value at M = 0. We also observe
that by increasing the number of samples; N, the error proba-
bility can be made to be as close to zero as desired. And there

N=30,n=4%,min(P)=0.0732 N=40,n=3%,min(P)=0.0558

08 08
06 06
o a®
0.4 0.4
02 02
0 0
) 10 20 30) 10 20 30 40
M M

N=60,n=2%,min(P)=0.0350 N=70,n=2%,min(P)=0.0025

0.8 0.8
0.6 0.6
))
o o

0.4 0.4
0.2 0.2 k

0 0

0 20 40 60 0 20 40 60 80
M M

Fig. 2: Probability of error (Py=probability not an old page
is replaced) versus number of pages retained (M).

N=40,n=3%
0.3 T T

Fig. 3: Rate of decrease of Py as M increases

is no need for NV to be a lot bigger than the number of bins
100/n, since even for N = 2-100/n the minimum probability
of error is extremely small.

Figure 3 zooms in on Py for small values of M. We notice
that for small values of M there is a huge reduction in the error
probability and that the minimum is achieved for a small M.
As M increases further the performance deteriorates linearly.
In this particular example, the optimum appears for M = 5
and there is no significant improvement for M > 3, while for
M > 6 the performance deteriorates.

The exponential improvement for small M can be intu-
itively explained as follows. For concreteness, suppose that
M = 1 and that the Markov chain X,, has been running
from time —oo onwards (hence it is in equlibrium at any time
m > 0). The relationship

{Xm, = 0} C {Am = O;Amfl S 1}

immediately gives that P(X,, = 0) < P(4,, = 0)[P(Am-1
0) + P(Am—1 = 1)]. Supposing that N > 3-100/n, P(Am
0) ~ e ® and P(A,, = 1) = 3¢~ * Therefore P(X,, = 0)
4e~5.

IA

N=40,n=3%
45 T

EX,)

Fig. 4: Average value of X, as a function of M

Compare this number with the case M = 0, where P(X,, =
0) = P(A,, =0) = e 2, and the claimed exponential improve-
ment is apparent.

Figure 4 is a plot of the average value of X, as a function
of M. This information could be used to avoid sampling at
every time page replacement. For example, if for a particular
value of M, E(X,,) is pretty high, then one could take fresh
samples every other iteration.

A key point to be deduced from the above plots is that
an acceptable performance can be achieved with very small
values of M and reasonably small values of N. From an im-
plementation point of view, this is important since it shows
that it is not necessary to sample a lot and it is enough to
remember very little.

IV. ANALYSIS

In this section we derive and solve a model that describes
the behavior of the algorithm precisely. We also compare the
results of the model with the simulation results.

The system is modeled by the Markov chain, X,,, which
tracks the number of old pages in the sample just prior
to the m!® page replacement. For a fixed N and n, let
pr(M)=P(An =k), k=0,...,N— M, denote the probabil-
ity that k old pages are acquired during a sampling. When it
is clear from the context we will abbreviate py(M) to pi. A,
is binomially distributed with parameters N — M and n/100:

pr = (N;M) - (n/100)* - (1 — n/100)N "M~

Let Ty denote the transition matrix of the chain X,, for a
given value of M. The form of the matrix depends on whether
M is smaller or larger than N/2. Since we are interested in
small values of M, we shall suppose that M < N/2*. Tt is

4The plots in Section III suggest that the M at which Py is a
minimum is less than N/2.

N=60, n=2%, simulation(P0)=dashed, model(no)=solid
0.45 T T T T T

0 5 10 15 20 25 30

Fig. 5: A plot of the probability of error versus M, simu-
lation (dotted curve, Pp) and analysis (solid curve,
o).

immediate that T is irreducible and has the general form

po p1 P2 pvy 11— E%o i
po P P2 pu 1= pi
0 po m pu—1 1-M " p
Tv = 0 0 po pv-2 11— Zi\iggpz (1)
o 0 0 ... Po 1—po

As may be inferred from the transition matrix, the Markov
chain models a system with one deterministic server, bino-
mial arrivals, and a finite queue size equal to M (the system’s
overall size is M + 1). An interesting feature of the system
is that as M increases, the average arrival rate, E(A,;,) =
(N — M)n/100, decreases linearly and the maximum queue
size increases linearly.

Let m = (mo,...,™m+1) denote the stationary distribution
of the chain X,,,. Let A = (a;;) be an (M +2) x (M +2) matrix,
with a;; =1 for all 4, 5. Let a = (a;) be a 1 x (M + 2) matrix
with a; = 1 for all 3. Since T is irreducible, I — T + A is
invertible [6] and

r=a-(I—Tu+A)"". 2)

Figure 5 compares the probability of error obtained from
simulation, Py, to that obtained by analysis, mo, for various
values of M. The slight difference between the two lines in the
figure are due to simulation error, since the simulation results
depend slightly on the seed used in the random number gener-
ator. Additionally, due to the nature of the scheme, no matter
how many iterations we run, the convergence of the simulation
is oscillatory and not monotone. Figure (6) presents another
example. Here, we choose N = 40 and 100/5 = 20 and thus
expect the scheme to work very well. Indeed, for a wide range
of values of M the probability of error is very close to zero.
The minimum 7 achieved is 1.6763°.

A further improvement on the scheme may result by vary-
ing M on the fly, based on how good samples we happen to get
at each iteration. If the samples are very good (old) it makes
sense to keep all of them while if they are bad (young) it makes
sense not to keep any of them. To this end, it is interesting to

N=40, n=5%, simulation(Po)zdashed, model(n0)=solid
0.14 T T T T T T

Fig. 6: Comparison between simulation and analysis for rel-
atively large N and n.

investigate how far we are from the hest possible policy. Ide-
ally, one could sample until one gets an old page that belongs
to the oldest bin, use it, and stop sampling. This is impossible
in practice since it is not possible to know if a page belongs
to the bin with the oldest pages. However, one could use
this ideal scheme to compare the average number of samples,
NI., it requires, to the number of samples, IV, required by our
scheme. It is easy to see that N’ is the mean of a geometric
distribution and equals 1/(n/100) = 100/n. To compensate
for the fact that the ideal scheme achieves zero probability
of error, one might compare N to N' =N - min(Py). For
example, in Figure 2, N = 30, 40, 60, 70; N = 25, 33.3, 50,
50; and N = 23.2,31.5,48.3, and 49.9.

V. ON THE OPTIMAL VALUE OF M

In this section we investigate optimal values of M for given
N and n. That such an M always exists follows from the
convexity of mo(M), which is established in the next section.
Formally, the optimal value of M is defined as

M* = arg min{mo(M)}.

We note that even though the form of the transition matrix,
T, allows one to write down an expression for mo(M), there
is no closed form solution from which one might calculate M ™.
Thus, we numerically solve Equation (2), compute mo(M) for
all M < N/2, and read off M~ for various values of N and n,
as done in Table 1. This table is to be read as follows: For
example, suppose N=30 and n = 4%, the minimum value of
7o is 0.073172 and it is achieved at M* = 4.

From Table 1 it can be concluded that mo(M™) is extremely
small in certain cases, but it is achieved at relatively large
values of M™. Practically, in these cases it makes sense to use
a value of M = M™ < M* such that mo(M™) is very close to
mo(M™). Table 2 presents suitable values of M+ by requiring
that

MY =min{M < M* : |xg(M) — mo(M*)] < 1077}.

The above discussion presents results regarding the opti-
mum value of M given N and n. We now give some insights
as to why there always exists such a value and motivate the
next section.

[N]] min(mo) | M~ [
n==5 n=10 - n=5 n=10 -
20 || 0.19456 0.00129 B 2 5 B
n=j4 n==_8 - n=4 n=§8 -
30| 0.073172 2.4454° - 4 9 -
n=3 n==6 n=9 n=3 n=6 n=9
40| 0.055794 8.0595~° 4.6629°| 5 12 16
n=2 n=4 n==6 n=2 n=4 n=6
50|| 0.13538 1.8678° 9.5368~ 7| 4 13 18
60 || 0.035002 8.3933~ - 7 19 -
70 [[0.0025402 f f 11 f f
801 3.15537° - - 16 - -

Tab. 1: Optimum values of 7o and M for various N and n
[~V Minpractical (7o) | MT I
n=>5 n=10 - n=5 n=10 -
20 0.19456 0.0016899 - 2 4 -
n=j4 n==§8 - n=4 n==8§8 -
30 0.073172 0.0003229 - 4 3 -
n=23 n==6 n=9 n=3 n=6 n=9
40 0.055794 0.00026642 0.00070757 5 3 1
n=2 n=4 n=6 n=2 n= n=6
50 0.13538 0.00045789 0.00019338 4 4 2
60 0.035002 0.00036471 - 7 3 -
70 || 0.0035109 - - 8 - -
80 || 0.00090908 - - 6 -

Tab. 2: Practically optimum values of 7o and M for various
N and n

Given an arbitrary N and n, let A and B be two instanti-
ations of the scheme proposed, for M and M + 1 respectively.
Let Aa be the average arrival rate of old pages from resam-
pling in system A and Ag be the arrival rate of old pages from
resampling in system B. Obviously, (N — M)n/100 = Aa >
(N —M —1)n/100 = Ap and thus system A on average gets
more old pages from resampling than system B. However, the
queue size of system A is smaller than that of B by one place.
In other words, there will be some cases where ()4 will be full
and old pages will be dropped, whereas Qg will be able to
accommodate an extra old page from a previous iteration or
from resampling. When M increases from 0 to 1, the positive
effect from the increase in the queue size is greater than the
negative effect from the decrease in the arrival rate (for typical
values of N and n). As M increases it is less likely that over-
flows occur and the dominating phenomenon is the decrease of
the arrival rate. This trade-off between high arrival rate and
high queue size causes my to be a convex function of M, and
thus there is an optimal value of M at which mg is minimized.

Figure 7 demonstrates the convexity of my as a function of
M for different values of n and a fixed value of N. We already
established in Section III the exponential decrease of mo for
small M, when the samples are good. The linear increase of
mo for large M, evident from Figure 7, is explained as follows:
As M increases, the average arrival rate decreases and the
queue size increases. As a result, the queue never overflows
and the only phenomenon into play is the linear decrease of
the arrival rate. For a queue that never overflows, mo = 1—\/u
and thus 7o increases linearly as a function of M.

Heuristically, one can make the following observation re-
garding the value of M™ for typical values of N and n. As
the ratio N/(100/n) increases, mo(M ") decreases and M"* in-
creases. In other words, the more samples there are compared
to the bhins, the smaller the minimum is and the older the
samples tend to be. Thus, it makes sense to retain more of
them for future iterations, resulting in a larger M ™.

M

Fig. 7: Convexity of g as a function of M.

VI. ON THE CONVEXITY

In this section we outline a proof of the fact that mo(M)
is a convex function of M, from which the existence of an
optimum value of M follows.

As remarked earlier, mo(M) cannot be expressed as a func-
tion of the elements of Ths in a closed form. Thus, it is not
possible to establish its convexity directly. We shall therefore
relate mo (M) to the quantity, D(¢t, M), which counts the num-
ber of overflows in the time interval [0, t] from a buffer of size
M. We shall establish the convexity of mo(M) by establishing
that D(t, M) for our system is convex in M for each ¢ > 0.
The convexity of D(t, M) follows from two lemmas presented
below. Due to limitations of space we can neither present the
proofs of the lemmas nor elaborate the exact nature of the
connection between mo(M) and D(t, M) in this paper.

Consider a queueing system with a buffer of size M. Sup-
pose that the buffer is empty at time 0. Let D(¢, M) be the
number of overflows from the buffer in the interval [0,¢]. We
want to examine the behavior of D(t, M) for different buffer
sizes. Note that D(¢, M) is obviously a decreasing function of
M since the larger the queue, the less the number of overflows.

Lemma 1 D(t, M) is a convex function of M.

Recall that our system is modelled as a queueing system
with one deterministic server and binomial arrivals. The av-
erage arrival rate A(M) = (N — M)n/100. Therefore, the
arrival process depends on M. As we vary the buffer size M,
the arrivals also vary. However, in Lemma 1 the arrival and
departure processes of the queueing system are assumed to
remain unchanged for the various values of M. Thus, Lemma
1 does not imply the convexity of D(¢, M) directly.

Lemma 2 D(t, M) is a convex function of M when the av-
erage arrival rate A(M) = —a - M + b for a,b > 0.

Lemma 2 establishes the convexity of D(t, M) for our sys-
tem. Finally, from Lemma 2 the convexity of mo(M) is estab-

lished:

Theorem 1 The probability of error wo(M) is convez in M.

VII. CONCLUSIONS

In this work we have introduced a randomized algorithm
for approximating LRU. Two versions of the algorithm are
studied through simulation and analysis. We find that car-
rying a small amount of information regarding good samples
from one iteration to the next, leads to a dramatic improve-
ment in performance. By a judicious of parameters (the total
number of samples; N, and the number of good samples, M,
retained from one iteration to the next) we find that LRU can
be approximated as closely as desired.

We are currently implementing versions of the schemes
mentioned here in real caches. Both versions of the algo-
rithm assume that each item of the cache is time stamped
with the last time that was accessed. For page caches, updat-
ing time stamps can be very expensive. Thus, approximations
similar to the clock algorithm [7] may be needed for a prac-
tical implementation. For web caches updating time stamps
is cheap. Exact LRU is possible in this case either by using
a stack and updating pointers, or by using the time stamps
directly. Thus, an approximation of LRU is not crucial in
the web caches case. However, it has recently been shown
that web caches schemes which take into account the size and
cost of a document outperform LRU [1]. These algorithms
(e.g. the greedy dual-size algorithm [1]) require extra data
structures to be maintained that increase their cost a lot in
comparison to LRU. The scheme introduced in this paper can
approximate these algorithms without the need for complex
data structures.

In general, our scheme can be used efficiently whenever
there is a large population of objects from which the “best”
is to be chosen according to some criterion.

REFERENCES

[1] P.Cao and S.Irani, Cost-aware WWW prozy caching algo-
rithms, In proceedings of the USENTX Symposium on Internet
Technologies and Systems, Monterey, CA, Dec. 1997.

[2] A.Fiat, R.Karp, M.Luby, L.McGeoch, D.Sleator and N.Youmg,
Competitive paging algorithms, Journal of Algorithms, 12:685-
699, 1991.

[3] Donald Gross and Carl M. Harris, Fundamentals of Queuing
Theory, Wiley Interscience, 1998.

[4] L.McGeoch and D.Sleator, A strongly competitive randomized
paging algorithm., Algorithmica, 6:816-825, 1991.

[5] R. Motwani and P. Raghavan, Randomized Algorithms, Cam-
bridge University Press, 1995.

[6] J. Norris, Markov Chains, Cambridge University Press, 1997.

[7] A. Silberschatz and P. Galvin, Operating System Concepts
(Fifth Edition), Addison Wesley Longman, 1997.

